Official code for "On the Frequency Bias of Generative Models", NeurIPS 2021

Overview

Frequency Bias of Generative Models

Generator Testbed Discriminator Testbed

This repository contains official code for the paper On the Frequency Bias of Generative Models.

You can find detailed usage instructions for analyzing standard GAN-architectures and your own models below.

If you find our code or paper useful, please consider citing

@inproceedings{Schwarz2021NEURIPS,
  title = {On the Frequency Bias of Generative Models},
  author = {Schwarz, Katja and Liao, Yiyi and Geiger, Andreas},
  booktitle = {Advances in Neural Information Processing Systems (NeurIPS)},
  year = {2021}
}

Installation

Please note, that this repo requires one GPU for running. First you have to make sure that you have all dependencies in place. The simplest way to do so, is to use anaconda.

You can create an anaconda environment called fbias using

conda env create -f environment.yml
conda activate fbias

Generator Testbed

You can run a demo of our generator testbed via:

chmod +x ./scripts/demo_generator_testbed.sh
./scripts/demo_generator_testbed.sh

This will train the Generator of Progressive Growing GAN to regress a single image. Further, the training progression on the image regression, spectrum, and spectrum error are summarized in output/generator_testbed/baboon64/pggan/eval.

In general, to analyze the spectral properties of a generator architecture you can train a model by running

python generator_testbed.py *EXPERIMENT_NAME* *PATH/TO/CONFIG*

This script should create a folder output/generator_testbed/*EXPERIMENT_NAME* where you can find the training progress. To evaluate the spectral properties of the trained model run

python eval_generator.py *EXPERIMENT_NAME* --psnr --image-evolution --spectrum-evolution --spectrum-error-evolution

This will print the average PSNR of the regressed images and visualize image evolution, spectrum evolution, and spectrum error evolution in output/generator_testbed/*EXPERIMENT_NAME*/eval.

Discriminator Testbed

You can run a demo of our discriminator testbed via:

chmod +x ./scripts/demo_discriminator_testbed.sh
./scripts/demo_discriminator_testbed.sh

This will train the Discriminator of Progressive Growing GAN to regress a single image. Further, the training progression on the image regression, spectrum, and spectrum error are summarized in output/discriminator_testbed/baboon64/pggan/eval.

In general, to analyze the spectral properties of a discriminator architecture you can train a model by running

python discriminator_testbed.py *EXPERIMENT_NAME* *PATH/TO/CONFIG*

This script should create a folder output/discriminator_testbed/*EXPERIMENT_NAME* where you can find the training progress. To evaluate the spectral properties of the trained model run

python eval_discriminator.py *EXPERIMENT_NAME* --psnr --image-evolution --spectrum-evolution --spectrum-error-evolution

This will print the average PSNR of the regressed images and visualize image evolution, spectrum evolution, and spectrum error evolution in output/discriminator_testbed/*EXPERIMENT_NAME*/eval.

Datasets

Toyset

You can generate a toy dataset with Gaussian peaks as spectrum by running

cd data
python toyset.py 64 100
cd ..

This creates a folder data/toyset/ and generates 100 images of resolution 64x64 pixels.

CelebA-HQ

Download celebA_hq. Then, update data:root: *PATH/TO/CELEBA_HQ* in the config file.

Other datasets

The config setting data:root: *PATH/TO/DATA* needs to point to a folder with the training images. You can use any dataset which follows the folder structure

*PATH/TO/DATA*/xxx.png
*PATH/TO/DATA*/xxy.png
...

By default, the images are center-cropped and optionally resized to the resolution specified in the config file underdata:resolution. Note, that you can also use a subset of images via data:subset.

Architectures

StyleGAN Support

In addition to Progressive Growing GAN, this repository supports analyzing the following architectures

For this, you need to initialize the stylegan3 submodule by running

git pull --recurse-submodules
cd models/stylegan3/stylegan3
git submodule init
git submodule update
cd ../../../

Next, you need to install any additional requirements for this repo. You can do this by running

conda activate fbias
conda env update --file environment_sg3.yml --prune

You can now analyze the spectral properties of the StyleGAN architectures by running

# StyleGAN2
python generator_testbed.py baboon64/StyleGAN2 configs/generator_testbed/sg2.yaml
python discriminator_testbed.py baboon64/StyleGAN2 configs/discriminator_testbed/sg2.yaml
# StyleGAN3
python generator_testbed.py baboon64/StyleGAN3 configs/generator_testbed/sg3.yaml

Other architectures

To analyze any other network architectures, you can add the respective model file (or submodule) under models. You then need to write a wrapper class to integrate the architecture seamlessly into this code base. Examples for wrapper classes are given in

  • models/stylegan2_generator.py for the Generator
  • models/stylegan2_discriminator.py for the Discriminator

Further Information

This repository builds on Lars Mescheder's awesome framework for GAN training. Further, we utilize code from the Stylegan3-repo and GenForce.

The repository offers the official implementation of our BMVC 2021 paper in PyTorch.

CrossMLP Cascaded Cross MLP-Mixer GANs for Cross-View Image Translation Bin Ren1, Hao Tang2, Nicu Sebe1. 1University of Trento, Italy, 2ETH, Switzerla

Bingoren 16 Jul 27, 2022
Implementation for paper LadderNet: Multi-path networks based on U-Net for medical image segmentation

Implementation for paper LadderNet: Multi-path networks based on U-Net for medical image segmentation This implementation is based on orobix implement

Juntang Zhuang 116 Sep 06, 2022
Use .csv files to record, play and evaluate motion capture data.

Purpose These scripts allow you to record mocap data to, and play from .csv files. This approach facilitates parsing of body movement data in statisti

21 Dec 12, 2022
Equivariant Imaging: Learning Beyond the Range Space

Equivariant Imaging: Learning Beyond the Range Space Equivariant Imaging: Learning Beyond the Range Space Dongdong Chen, Julián Tachella, Mike E. Davi

Dongdong Chen 46 Jan 01, 2023
i-RevNet Pytorch Code

i-RevNet: Deep Invertible Networks Pytorch implementation of i-RevNets. i-RevNets define a family of fully invertible deep networks, built from a succ

Jörn Jacobsen 378 Dec 06, 2022
Spearmint Bayesian optimization codebase

Spearmint Spearmint is a software package to perform Bayesian optimization. The Software is designed to automatically run experiments (thus the code n

Formerly: Harvard Intelligent Probabilistic Systems Group -- Now at Princeton 1.5k Dec 29, 2022
Pytorch Implementation for (STANet+ and STANet)

Pytorch Implementation for (STANet+ and STANet) V2-Weakly Supervised Visual-Auditory Saliency Detection with Multigranularity Perception (arxiv), pdf:

GuotaoWang 14 Nov 29, 2022
Gems & Holiday Package Prediction

Predictive_Modelling Gems & Holiday Package Prediction This project is based on 2 cases studies : Gems Price Prediction and Holiday Package prediction

Avnika Mehta 1 Jan 27, 2022
Weighted QMIX: Expanding Monotonic Value Function Factorisation

This repo contains the cleaned-up code that was used in "Weighted QMIX: Expanding Monotonic Value Function Factorisation"

whirl 82 Dec 29, 2022
Wider or Deeper: Revisiting the ResNet Model for Visual Recognition

ademxapp Visual applications by the University of Adelaide In designing our Model A, we did not over-optimize its structure for efficiency unless it w

Zifeng Wu 338 Dec 12, 2022
public repo for ESTER dataset and modeling (EMNLP'21)

Project / Paper Introduction This is the project repo for our EMNLP'21 paper: https://arxiv.org/abs/2104.08350 Here, we provide brief descriptions of

PlusLab 19 Oct 27, 2022
Analyzing basic network responses to novel classes

novelty-detection Analyzing how AlexNet responds to novel classes with varying degrees of similarity to pretrained classes from ImageNet. If you find

Noam Eshed 34 Oct 02, 2022
Improving XGBoost survival analysis with embeddings and debiased estimators

xgbse: XGBoost Survival Embeddings "There are two cultures in the use of statistical modeling to reach conclusions from data

Loft 242 Dec 30, 2022
You Only Hypothesize Once: Point Cloud Registration with Rotation-equivariant Descriptors

You Only Hypothesize Once: Point Cloud Registration with Rotation-equivariant Descriptors In this paper, we propose a novel local descriptor-based fra

Haiping Wang 80 Dec 15, 2022
A TensorFlow implementation of Neural Program Synthesis from Diverse Demonstration Videos

ViZDoom http://vizdoom.cs.put.edu.pl ViZDoom allows developing AI bots that play Doom using only the visual information (the screen buffer). It is pri

Hyeonwoo Noh 1 Aug 19, 2020
Attention mechanism with MNIST dataset

[TensorFlow] Attention mechanism with MNIST dataset Usage $ python run.py Result Training Loss graph. Test Each figure shows input digit, attention ma

YeongHyeon Park 12 Jun 10, 2022
Official Repository for the ICCV 2021 paper "PixelSynth: Generating a 3D-Consistent Experience from a Single Image"

PixelSynth: Generating a 3D-Consistent Experience from a Single Image (ICCV 2021) Chris Rockwell, David F. Fouhey, and Justin Johnson [Project Website

Chris Rockwell 95 Nov 22, 2022
Api for getting bin info and getting encrypted card details for adyen.

Bin Info And Adyen Cse Enc Python api for getting bin info and getting encrypted

Roldex Stark 8 Dec 30, 2022
A Python Reconnection Tool for alt:V

altv-reconnect What? It invokes a reconnect in the altV Client Dev Console. You get to determine when your local client should reconnect when developi

8 Jun 30, 2022
Image Restoration Toolbox (PyTorch). Training and testing codes for DPIR, USRNet, DnCNN, FFDNet, SRMD, DPSR, BSRGAN, SwinIR

Image Restoration Toolbox (PyTorch). Training and testing codes for DPIR, USRNet, DnCNN, FFDNet, SRMD, DPSR, BSRGAN, SwinIR

Kai Zhang 2k Dec 31, 2022