Explaining Hyperparameter Optimization via PDPs

Overview

Explaining Hyperparameter Optimization via PDPs

This repository gives access to an implementation of the methods presented in the paper submission “Explaining Hyperparameter Optimization via PDPs”, as well as all code that was used for the experimental analysis.

This repository is structured as follows:

    ├── analysis/               # Scripts used to create figures and tables in the paper
    ├── data/                   # Location where all experimental data is stored
    │   ├── raw/                # Raw datasets for the DNN surrogate benchmark
    │   ├── runs/               # Individual runs 
    ├── benchmarks/             # Code for experimental analysis (section 6)
    │   ├── synthetic           # Synthetic benchmark (section 6.1)
    │   ├── mlp                 # DNN surrogate benchmark (section 6.2)
    ├── renv/                   # renv configuration files to enable a reproducible setup 
    ├── R/                      # Implementation of methods 
    ├── LICENSE
    └── README.md               

Reproducible Setup

To allow for a proper, reproducible setup of the environment we use the package renv.

The project dependencies can be installed via

library("renv")
renv::restore()

Quick Start

# Loading all scripts we need
source("R/tree_splitting.R")
source("R/helper.R")
source("R/marginal_effect.R")
source("R/plot_functions.R")

First, assume we have a surrogate model that we want to analyze.

Here, for example, we tuned a support vector machine on the iris task, and extracted the surrogate model after the last iteration.

library(mlr)
library(mlrMBO)
library(e1071)
library(BBmisc)
library(data.table)

par.set = makeParamSet(
  makeNumericParam("cost", -10, 4, trafo = function(x) 2^x),
  makeNumericParam("gamma", -10, 4, trafo = function(x) 2^x)
)

ctrl = makeMBOControl()
ctrl = setMBOControlInfill(ctrl, crit = makeMBOInfillCritCB(cb.lambda = 1))
ctrl = setMBOControlTermination(ctrl, iters = 5)
tune.ctrl = makeTuneControlMBO(mbo.control = ctrl)
res = tuneParams(makeLearner("classif.svm"), iris.task, cv3, par.set = par.set, control = tune.ctrl,
  show.info = FALSE)
  
surrogate =  res$mbo.result$models[[1]]

print(surrogate)
FALSE Model for learner.id=regr.km; learner.class=regr.km
FALSE Trained on: task.id = data; obs = 13; features = 2
FALSE Hyperparameters: jitter=TRUE,covtype=matern3_2,optim.method=gen,nugget.estim=TRUE

We are computing the PDP estimate with confidence for hyperparameter cost. We use the marginal_effect_sd_over_mean function, which uses the iml packages.

##        cost      mean         sd
## 1 -9.998017 0.8085137 0.12850346
## 2 -9.261563 0.8223581 0.11260680
## 3 -8.525109 0.8271599 0.09651956
## 4 -7.788655 0.8161618 0.07913981
## 5 -7.052201 0.7814865 0.06697429
## 6 -6.315747 0.7200586 0.06511970

We visualize the outcome:

library(ggplot2)

p = plot_pdp_with_uncertainty_1D(me)
print(p)

To improve the uncertainty estimates, we partition the input space. We perform 2 splits and use the L2-objective.

predictor = Predictor$new(model = surrogate, data = data)
effects = FeatureEffect$new(predictor = predictor, feature = "cost", method = "pdp")

tree = compute_tree(effects, data, "SS_L2", 2)

We now want to visualize the PDP in the node with the best objective after 1 split.

plot_pdp_for_node(node = tree[[2]][[2]], testdata = data, model = surrogate, pdp.feature = "cost", grid.size = 20)

Reproduce Experiments

The steps necessary to reproduce the experiments are described here.

Computer Vision Paper Reviews with Key Summary of paper, End to End Code Practice and Jupyter Notebook converted papers

Computer-Vision-Paper-Reviews Computer Vision Paper Reviews with Key Summary along Papers & Codes. Jonathan Choi 2021 The repository provides 100+ Pap

Jonathan Choi 2 Mar 17, 2022
This is the official code for the paper "Learning with Nested Scene Modeling and Cooperative Architecture Search for Low-Light Vision"

RUAS This is the official code for the paper "Learning with Nested Scene Modeling and Cooperative Architecture Search for Low-Light Vision" A prelimin

Vision & Optimization Group (VOG) 2 May 05, 2022
[CVPR'2020] DeepDeform: Learning Non-rigid RGB-D Reconstruction with Semi-supervised Data

DeepDeform (CVPR'2020) DeepDeform is an RGB-D video dataset containing over 390,000 RGB-D frames in 400 videos, with 5,533 optical and scene flow imag

Aljaz Bozic 165 Jan 09, 2023
An official implementation of "Background-Aware Pooling and Noise-Aware Loss for Weakly-Supervised Semantic Segmentation" (CVPR 2021) in PyTorch.

BANA This is the implementation of the paper "Background-Aware Pooling and Noise-Aware Loss for Weakly-Supervised Semantic Segmentation". For more inf

CV Lab @ Yonsei University 59 Dec 12, 2022
Code for the paper "Graph Attention Tracking". (CVPR2021)

SiamGAT 1. Environment setup This code has been tested on Ubuntu 16.04, Python 3.5, Pytorch 1.2.0, CUDA 9.0. Please install related libraries before r

122 Dec 24, 2022
LightningFSL: Pytorch-Lightning implementations of Few-Shot Learning models.

LightningFSL: Few-Shot Learning with Pytorch-Lightning In this repo, a number of pytorch-lightning implementations of FSL algorithms are provided, inc

Xu Luo 76 Dec 11, 2022
Project page for the paper Semi-Supervised Raw-to-Raw Mapping 2021.

Project page for the paper Semi-Supervised Raw-to-Raw Mapping 2021.

Mahmoud Afifi 22 Nov 08, 2022
A framework to train language models to learn invariant representations.

Invariant Language Modeling Implementation of the training for invariant language models. Motivation Modern pretrained language models are critical co

6 Nov 16, 2022
PyTorch Implementation of PortaSpeech: Portable and High-Quality Generative Text-to-Speech

PortaSpeech - PyTorch Implementation PyTorch Implementation of PortaSpeech: Portable and High-Quality Generative Text-to-Speech. Model Size Module Nor

Keon Lee 279 Jan 04, 2023
Code implementation from my Medium blog post: [Transformers from Scratch in PyTorch]

transformer-from-scratch Code for my Medium blog post: Transformers from Scratch in PyTorch Note: This Transformer code does not include masked attent

Frank Odom 27 Dec 21, 2022
Python implementation of the multistate Bennett acceptance ratio (MBAR)

pymbar Python implementation of the multistate Bennett acceptance ratio (MBAR) method for estimating expectations and free energy differences from equ

Chodera lab // Memorial Sloan Kettering Cancer Center 169 Dec 02, 2022
Dynamical movement primitives (DMPs), probabilistic movement primitives (ProMPs), spatially coupled bimanual DMPs.

Movement Primitives Movement primitives are a common group of policy representations in robotics. There are many different types and variations. This

DFKI Robotics Innovation Center 63 Jan 06, 2023
AI assistant built in python.the features are it can display time,say weather,open-google,youtube,instagram.

AI assistant built in python.the features are it can display time,say weather,open-google,youtube,instagram.

AK-Shanmugananthan 1 Nov 29, 2021
Data-Uncertainty Guided Multi-Phase Learning for Semi-supervised Object Detection

An official implementation of paper Data-Uncertainty Guided Multi-Phase Learning for Semi-supervised Object Detection

11 Nov 23, 2022
Implementation of the Transformer variant proposed in "Transformer Quality in Linear Time"

FLASH - Pytorch Implementation of the Transformer variant proposed in the paper Transformer Quality in Linear Time Install $ pip install FLASH-pytorch

Phil Wang 209 Dec 28, 2022
A minimalist implementation of score-based diffusion model

sdeflow-light This is a minimalist codebase for training score-based diffusion models (supporting MNIST and CIFAR-10) used in the following paper "A V

Chin-Wei Huang 89 Dec 20, 2022
PyTorch implementation of "Transparency by Design: Closing the Gap Between Performance and Interpretability in Visual Reasoning"

Transparency-by-Design networks (TbD-nets) This repository contains code for replicating the experiments and visualizations from the paper Transparenc

David Mascharka 351 Nov 18, 2022
The CLRS Algorithmic Reasoning Benchmark

Learning representations of algorithms is an emerging area of machine learning, seeking to bridge concepts from neural networks with classical algorithms.

DeepMind 251 Jan 05, 2023
Examples of how to create colorful, annotated equations in Latex using Tikz.

The file "eqn_annotate.tex" is the main latex file. This repository provides four examples of annotated equations: [example_prob.tex] A simple one ins

SyNeRCyS Research Lab 3.2k Jan 05, 2023
An open-source outlier detection package by Getcontact Data Team

pyfbad The pyfbad library supports anomaly detection projects. An end-to-end anomaly detection application can be written using the source codes of th

Teknasyon Tech 41 Dec 27, 2022