[Open Source]. The improved version of AnimeGAN. Landscape photos/videos to anime

Overview

AnimeGANv2

「Open Source」. The improved version of AnimeGAN.
Project Page」 | Landscape photos/videos to anime

News
(2020.12.25) AnimeGANv3 will be released along with its paper in the spring of 2021.
(2021.02.21) The pytorch version of AnimeGANv2 has been released, Be grateful to @bryandlee for his contribution.

Focus:

Anime style Film Picture Number Quality Download Style Dataset
Miyazaki Hayao The Wind Rises 1752 1080p Link
Makoto Shinkai Your Name & Weathering with you 1445 BD
Kon Satoshi Paprika 1284 BDRip

     Different styles of training have different loss weights!

News:

The improvement directions of AnimeGANv2 mainly include the following 4 points:  
  • 1. Solve the problem of high-frequency artifacts in the generated image.

  • 2. It is easy to train and directly achieve the effects in the paper.

  • 3. Further reduce the number of parameters of the generator network. (generator size: 8.17 Mb), The lite version has a smaller generator model.

  • 4. Use new high-quality style data, which come from BD movies as much as possible.

          AnimeGAN can be accessed from here.


Requirements

  • python 3.6
  • tensorflow-gpu
    • tensorflow-gpu 1.8.0 (ubuntu, GPU 1080Ti or Titan xp, cuda 9.0, cudnn 7.1.3)
    • tensorflow-gpu 1.15.0 (ubuntu, GPU 2080Ti, cuda 10.0.130, cudnn 7.6.0)
  • opencv
  • tqdm
  • numpy
  • glob
  • argparse

Usage

1. Download vgg19

vgg19.npy

2. Download Train/Val Photo dataset

Link

3. Do edge_smooth

python edge_smooth.py --dataset Hayao --img_size 256

4. Calculate the three-channel(BGR) color difference

python data_mean.py --dataset Hayao

5. Train

python main.py --phase train --dataset Hayao --data_mean [13.1360,-8.6698,-4.4661] --epoch 101 --init_epoch 10
For light version: python main.py --phase train --dataset Hayao --data_mean [13.1360,-8.6698,-4.4661] --light --epoch 101 --init_epoch 10

6. Extract the weights of the generator

python get_generator_ckpt.py --checkpoint_dir ../checkpoint/AnimeGAN_Hayao_lsgan_300_300_1_2_10_1 --style_name Hayao

7. Inference

python test.py --checkpoint_dir checkpoint/generator_Hayao_weight --test_dir dataset/test/HR_photo --style_name Hayao/HR_photo

8. Convert video to anime

python video2anime.py --video video/input/お花見.mp4 --checkpoint_dir checkpoint/generator_Paprika_weight


Results


😍 Photo to Paprika Style













😍 Photo to Hayao Style













😍 Photo to Shinkai Style











License

This repo is made freely available to academic and non-academic entities for non-commercial purposes such as academic research, teaching, scientific publications. Permission is granted to use the AnimeGANv2 given that you agree to my license terms. Regarding the request for commercial use, please contact us via email to help you obtain the authorization letter.

Author

Xin Chen

Comments
  • Training code coming soon?

    Training code coming soon?

    Hello Tachibana san, Great work and congratulations on the work on AnimeGANv2. I had good success in converting the models and running the models on Android. However the latency is still an issue, it takes about 500 ms to run a 128x128 patch of image using Tensorflow Android(I tried tflite but it increases the inference time strangely.) I want to modify the network architecture and optimize its performance further to make it a real-time application (under 100 ms) So to cut a long story short, are you planning to release the training code in near future? :)

    Thank you.

    opened by maderix 10
  • Strange G_vgg loss curve

    Strange G_vgg loss curve

    Hello, thank you for posting this great work!

    I have retrained the model with a customized dataset, the results look great but the loss curves seem strange to me.

    image

    The adversary loss seems ok, I set the weights for D and G to 200 and 300, respectively, and the losses are approaching the equilibrium.

    However, the G_vgg loss, which consists of c_loss, s_loss, color_loss, tv_loss, reaches the bottom at around epoch 30 and then starts increasing. I looked at each individual loss among G_vgg_loss, only the s_loss is decreasing over time, and all others starts increasing after epoch 30. image

    Interestingly, the validation samples from epoch 100 is apparently better than the ones from epoch 30. Does anyone experience the same?

    opened by HaozhouPang 4
  • Run on CPU insted of GPU

    Run on CPU insted of GPU

    Hi, I Try To run this Project But I have little problem and when I try to start train phase this code is just only run on cpu but I install cudatoolkit and tensorflow-gpu. can u help me ?

    2020-12-06 18:00:45.278352: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA     [693/1792]
    2020-12-06 18:00:45.302721: E tensorflow/stream_executor/cuda/cuda_driver.cc:397] failed call to cuInit: CUDA_ERROR_NO_DEVICE                                                              
    2020-12-06 18:00:45.302766: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:158] retrieving CUDA diagnostic information for host: host-name
    2020-12-06 18:00:45.302775: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:165] hostname: host-name
    2020-12-06 18:00:45.302816: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:189] libcuda reported version is: 450.66.0
    2020-12-06 18:00:45.302853: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:193] kernel reported version is: 450.66.0                                                                 2020-12-06 18:00:45.302863: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:300] kernel version seems to match DSO: 450.66.0
    
    npy file loaded -------  vgg19_weight/vgg19.npy
    ##### Information #####
    # gan type :  lsgan
    # light :  False
    # dataset :  Hayao
    # max dataset number :  6656
    # batch_size :  12
    # epoch :  101
    # init_epoch :  10
    # training image size [H, W] :  [256, 256]
    # g_adv_weight,d_adv_weight,con_weight,sty_weight,color_weight,tv_weight :  300.0 300.0 1.5 2.5 10.0 1.0
    # init_lr,g_lr,d_lr :  0.0002 2e-05 4e-05
    # training_rate G -- D: 1 : 1
    build model finished: 0.138872s
    build model finished: 0.130571s
    build model finished: 0.120662s
    build model finished: 0.127711s
    build model finished: 0.123440s
    G:
    ---------
    Variables: name (type shape) [size]
    ---------
    generator/G_MODEL/A/Conv/weights:0 (float32_ref 7x7x3x32) [4704, bytes: 18816]
    generator/G_MODEL/A/LayerNorm/beta:0 (float32_ref 32) [32, bytes: 128]
    generator/G_MODEL/A/LayerNorm/gamma:0 (float32_ref 32) [32, bytes: 128]
    generator/G_MODEL/A/Conv_1/weights:0 (float32_ref 3x3x32x64) [18432, bytes: 73728]
    generator/G_MODEL/A/LayerNorm_1/beta:0 (float32_ref 64) [64, bytes: 256]
    generator/G_MODEL/A/LayerNorm_1/gamma:0 (float32_ref 64) [64, bytes: 256]
    generator/G_MODEL/A/Conv_2/weights:0 (float32_ref 3x3x64x64) [36864, bytes: 147456]
    generator/G_MODEL/A/LayerNorm_2/beta:0 (float32_ref 64) [64, bytes: 256]
    generator/G_MODEL/A/LayerNorm_2/gamma:0 (float32_ref 64) [64, bytes: 256]
    generator/G_MODEL/B/Conv/weights:0 (float32_ref 3x3x64x128) [73728, bytes: 294912]
    generator/G_MODEL/B/LayerNorm/beta:0 (float32_ref 128) [128, bytes: 512]
    generator/G_MODEL/B/LayerNorm/gamma:0 (float32_ref 128) [128, bytes: 512]
    generator/G_MODEL/B/Conv_1/weights:0 (float32_ref 3x3x128x128) [147456, bytes: 589824]
    generator/G_MODEL/B/LayerNorm_1/beta:0 (float32_ref 128) [128, bytes: 512]                                                                                                        [649/1792]generator/G_MODEL/B/LayerNorm_1/gamma:0 (float32_ref 128) [128, bytes: 512]
    generator/G_MODEL/C/Conv/weights:0 (float32_ref 3x3x128x128) [147456, bytes: 589824]
    generator/G_MODEL/C/LayerNorm/beta:0 (float32_ref 128) [128, bytes: 512]
    generator/G_MODEL/C/LayerNorm/gamma:0 (float32_ref 128) [128, bytes: 512]
    generator/G_MODEL/C/r1/Conv/weights:0 (float32_ref 1x1x128x256) [32768, bytes: 131072]
    generator/G_MODEL/C/r1/LayerNorm/beta:0 (float32_ref 256) [256, bytes: 1024]
    generator/G_MODEL/C/r1/LayerNorm/gamma:0 (float32_ref 256) [256, bytes: 1024]
    generator/G_MODEL/C/r1/r1/w:0 (float32_ref 3x3x256x1) [2304, bytes: 9216]
    generator/G_MODEL/C/r1/r1/bias:0 (float32_ref 256) [256, bytes: 1024]
    generator/G_MODEL/C/r1/1/beta:0 (float32_ref 256) [256, bytes: 1024]
    generator/G_MODEL/C/r1/1/gamma:0 (float32_ref 256) [256, bytes: 1024]
    generator/G_MODEL/C/r1/Conv_1/weights:0 (float32_ref 1x1x256x256) [65536, bytes: 262144]
    generator/G_MODEL/C/r1/2/beta:0 (float32_ref 256) [256, bytes: 1024]
    generator/G_MODEL/C/r1/2/gamma:0 (float32_ref 256) [256, bytes: 1024]
    generator/G_MODEL/C/r2/Conv/weights:0 (float32_ref 1x1x256x512) [131072, bytes: 524288]
    generator/G_MODEL/C/r2/LayerNorm/beta:0 (float32_ref 512) [512, bytes: 2048]
    generator/G_MODEL/C/r2/LayerNorm/gamma:0 (float32_ref 512) [512, bytes: 2048]
    generator/G_MODEL/C/r2/r2/w:0 (float32_ref 3x3x512x1) [4608, bytes: 18432]
    generator/G_MODEL/C/r2/r2/bias:0 (float32_ref 512) [512, bytes: 2048]
    generator/G_MODEL/C/r2/1/beta:0 (float32_ref 512) [512, bytes: 2048]
    generator/G_MODEL/C/r2/1/gamma:0 (float32_ref 512) [512, bytes: 2048]
    generator/G_MODEL/C/r2/Conv_1/weights:0 (float32_ref 1x1x512x256) [131072, bytes: 524288]
    generator/G_MODEL/C/r2/2/beta:0 (float32_ref 256) [256, bytes: 1024]
    generator/G_MODEL/C/r2/2/gamma:0 (float32_ref 256) [256, bytes: 1024]
    generator/G_MODEL/C/r3/Conv/weights:0 (float32_ref 1x1x256x512) [131072, bytes: 524288]
    generator/G_MODEL/C/r3/LayerNorm/beta:0 (float32_ref 512) [512, bytes: 2048]
    generator/G_MODEL/C/r3/LayerNorm/gamma:0 (float32_ref 512) [512, bytes: 2048]
    generator/G_MODEL/C/r3/r3/w:0 (float32_ref 3x3x512x1) [4608, bytes: 18432]
    generator/G_MODEL/C/r3/r3/bias:0 (float32_ref 512) [512, bytes: 2048]
    generator/G_MODEL/C/r3/1/beta:0 (float32_ref 512) [512, bytes: 2048]
    generator/G_MODEL/C/r3/1/gamma:0 (float32_ref 512) [512, bytes: 2048]
    generator/G_MODEL/C/r3/Conv_1/weights:0 (float32_ref 1x1x512x256) [131072, bytes: 524288]
    generator/G_MODEL/C/r3/2/beta:0 (float32_ref 256) [256, bytes: 1024]
    generator/G_MODEL/C/r3/2/gamma:0 (float32_ref 256) [256, bytes: 1024]
    generator/G_MODEL/C/r4/Conv/weights:0 (float32_ref 1x1x256x512) [131072, bytes: 524288]
    generator/G_MODEL/C/r4/LayerNorm/beta:0 (float32_ref 512) [512, bytes: 2048]
    generator/G_MODEL/C/r4/LayerNorm/gamma:0 (float32_ref 512) [512, bytes: 2048]
    generator/G_MODEL/C/r4/r4/w:0 (float32_ref 3x3x512x1) [4608, bytes: 18432]
    generator/G_MODEL/C/r4/r4/bias:0 (float32_ref 512) [512, bytes: 2048]
    generator/G_MODEL/C/r4/1/beta:0 (float32_ref 512) [512, bytes: 2048]
    generator/G_MODEL/C/r4/1/gamma:0 (float32_ref 512) [512, bytes: 2048]
    generator/G_MODEL/C/r4/Conv_1/weights:0 (float32_ref 1x1x512x256) [131072, bytes: 524288]
    generator/G_MODEL/C/r4/2/beta:0 (float32_ref 256) [256, bytes: 1024]
    generator/G_MODEL/C/r4/2/gamma:0 (float32_ref 256) [256, bytes: 1024]                                                                                                             [605/1792]generator/G_MODEL/C/Conv_1/weights:0 (float32_ref 3x3x256x128) [294912, bytes: 1179648]
    generator/G_MODEL/C/LayerNorm_1/beta:0 (float32_ref 128) [128, bytes: 512]
    generator/G_MODEL/C/LayerNorm_1/gamma:0 (float32_ref 128) [128, bytes: 512]
    generator/G_MODEL/D/Conv/weights:0 (float32_ref 3x3x128x128) [147456, bytes: 589824]
    generator/G_MODEL/D/LayerNorm/beta:0 (float32_ref 128) [128, bytes: 512]
    generator/G_MODEL/D/LayerNorm/gamma:0 (float32_ref 128) [128, bytes: 512]
    generator/G_MODEL/D/Conv_1/weights:0 (float32_ref 3x3x128x128) [147456, bytes: 589824]
    generator/G_MODEL/D/LayerNorm_1/beta:0 (float32_ref 128) [128, bytes: 512]
    generator/G_MODEL/D/LayerNorm_1/gamma:0 (float32_ref 128) [128, bytes: 512]
    generator/G_MODEL/E/Conv/weights:0 (float32_ref 3x3x128x64) [73728, bytes: 294912]
    generator/G_MODEL/E/LayerNorm/beta:0 (float32_ref 64) [64, bytes: 256]
    generator/G_MODEL/E/LayerNorm/gamma:0 (float32_ref 64) [64, bytes: 256]
    generator/G_MODEL/E/Conv_1/weights:0 (float32_ref 3x3x64x64) [36864, bytes: 147456]
    generator/G_MODEL/E/LayerNorm_1/beta:0 (float32_ref 64) [64, bytes: 256]
    generator/G_MODEL/E/LayerNorm_1/gamma:0 (float32_ref 64) [64, bytes: 256]
    generator/G_MODEL/E/Conv_2/weights:0 (float32_ref 7x7x64x32) [100352, bytes: 401408]
    generator/G_MODEL/E/LayerNorm_2/beta:0 (float32_ref 32) [32, bytes: 128]
    generator/G_MODEL/E/LayerNorm_2/gamma:0 (float32_ref 32) [32, bytes: 128]
    generator/G_MODEL/out_layer/Conv/weights:0 (float32_ref 1x1x32x3) [96, bytes: 384]
    Total size of variables: 2143552
    Total bytes of variables: 8574208
     [*] Reading checkpoints...
     [*] Failed to find a checkpoint
     [!] Load failed...
    Epoch:   0 Step:     0 /   554  time: 80.342747 s init_v_loss: 592.22143555  mean_v_loss: 592.22143555
    
    opened by amirzenoozi 3
  • Add ⭐️Weights and Biases⭐️ logging

    Add ⭐️Weights and Biases⭐️ logging

    Hey @TachibanaYoshino 👋, This PR aims to add basic Weights and Biases Metric Logging by appending to the existing codebase with minimal changes.

    The changes can be summarized as follows :-

    Add 3 extra arguments namely --use_wandb, --wandb_project and --wandb_entity which can be used to specify whether to use wandb, the name of the project to be used ("AnimeGANv2" by default) and name of the entity to be used.

    opened by SauravMaheshkar 2
  • Can I train a model by using multiple GPUs?

    Can I train a model by using multiple GPUs?

    Thank you for your awesome project. I think if i can using mulitple GPUs to traning, it's making things be more efficient. Hope to get some advice from you. Thanks.

    opened by MorningStarJ 2
  • typo on the folders

    typo on the folders

    Hello Author! your folder naming has a typo though It's kinda annoying to rename it again and again cuz I'm using google colab cuz I tried to use shinkai image image

    opened by IchimakiKasura 2
  • issue saving checkpoints of model

    issue saving checkpoints of model

    hello! when I try to train the model, I get the following error when the code tries to save the checkpoint:

    Traceback (most recent call last):
      File "main.py", line 115, in <module>
        main()
      File "main.py", line 107, in main
        gan.train()
      File "/content/drive/.shortcut-targets-by-id/1X8hfrOWE2KxmaJG4LFKH9ydVQ4BA7oyZ/cs7643-final-project/AnimeGANv2.py", line 302, in train
        self.save(self.checkpoint_dir, epoch)
      File "/content/drive/.shortcut-targets-by-id/1X8hfrOWE2KxmaJG4LFKH9ydVQ4BA7oyZ/cs7643-final-project/AnimeGANv2.py", line 341, in save
        self.saver.save(self.sess, os.path.join(checkpoint_dir, self.model_name + '.model'), global_step=step)
      File "/tensorflow-1.15.2/python3.7/tensorflow_core/python/training/saver.py", line 1186, in save
        save_relative_paths=self._save_relative_paths)
      File "/tensorflow-1.15.2/python3.7/tensorflow_core/python/training/checkpoint_management.py", line 231, in update_checkpoint_state_internal
        last_preserved_timestamp=last_preserved_timestamp)
      File "/tensorflow-1.15.2/python3.7/tensorflow_core/python/training/checkpoint_management.py", line 110, in generate_checkpoint_state_proto
        model_checkpoint_path = os.path.relpath(model_checkpoint_path, save_dir)
      File "/usr/lib/python3.7/posixpath.py", line 475, in relpath
        start_list = [x for x in abspath(start).split(sep) if x]
      File "/usr/lib/python3.7/posixpath.py", line 383, in abspath
        cwd = os.getcwd()
    FileNotFoundError: [Errno 2] No such file or directory
    

    I mounted my google drive into colab and am using colab to train the model. When I check my checkpoint folder, I have two files there but it appears that I am missing the checkpoint binary file and the .meta file. Any idea why this could be happening? image

    opened by wooae 1
  • Cannot understand rgb2yuv function code

    Cannot understand rgb2yuv function code

    def rgb2yuv(rgb):
        """
        Convert RGB image into YUV https://en.wikipedia.org/wiki/YUV
        """
        rgb = (rgb + 1.0)/2.0
        return tf.image.rgb_to_yuv(rgb)
    

    tf.image.rgb_to_yuv(rgb) do the op: rgb_to_yuv so,I can't understand what this line of code means: "rgb = (rgb + 1.0)/2.0"

    opened by wan-h 1
  • What attributed to the better performance of the model compared to your earlier model?

    What attributed to the better performance of the model compared to your earlier model?

    Hi, thanks for sharing your work. What in your opinion was the key to achieving better performance compared to your earlier model (v1) and/or other models?

    I've roughly seen the code of this repo but I can't figure it out.

    opened by xiankgx 1
  • How to use 512 x 512 or higher-definition pictures for training

    How to use 512 x 512 or higher-definition pictures for training

    I want to use 512 x 512 or higher resolution images, my plan is as follows:

    1. ffmpeg extracts 1080 * 1080 pictures, then sacle to 512 x 512
    2. python edge_smooth.py --dataset xxxx --img_size 512
    3. python train.py --dataset xxxx --epoch 101 --init_epoch 10 But I see that the pictures in train_photo under the dataset will also be used for training, so do the pictures in train_photo need to be updated to 512 x 512?
    opened by mjgaga 0
  • Could you share how you get the improvements that you mentioned in the readme?

    Could you share how you get the improvements that you mentioned in the readme?

    Hi, Could you share how you get these 3 improvements that you mentioned in the readme?


    1. Solve the problem of high-frequency artifacts in the generated image.

    2. It is easy to train and directly achieve the effects in the paper.

    3. Further reduce the number of parameters of the generator network. (generator size: 8.17 Mb), The lite version has a smaller generator model.


    opened by kasim0226 0
  • How to train face model?

    How to train face model?

    Is the training method the same as the training landscape photos? The difference is the data set. As long as the human face data is aligned, plus the animation face alignment, is that right?

    opened by baixinping618 0
Owner
CC
AI Algorithm Engineer
CC
Minecraft Hack Detection With Python

Minecraft Hack Detection An attempt to try and use crowd sourced replays to find

Kuleen Sasse 3 Mar 26, 2022
Tooling for converting STAC metadata to ODC data model

手语识别 0、使用到的模型 (1). openpose,作者:CMU-Perceptual-Computing-Lab https://github.com/CMU-Perceptual-Computing-Lab/openpose (2). 图像分类classification,作者:Bubbl

Open Data Cube 65 Dec 20, 2022
In generative deep geometry learning, we often get many obj files remain to be rendered

a python prompt cli script for blender batch render In deep generative geometry learning, we always get many .obj files to be rendered. Our rendered i

Tian-yi Liang 1 Mar 20, 2022
Stacked Generative Adversarial Networks

Stacked Generative Adversarial Networks This repository contains code for the paper "Stacked Generative Adversarial Networks", CVPR 2017. Part of the

Xun Huang 241 May 07, 2022
FANet - Real-time Semantic Segmentation with Fast Attention

FANet Real-time Semantic Segmentation with Fast Attention Ping Hu, Federico Perazzi, Fabian Caba Heilbron, Oliver Wang, Zhe Lin, Kate Saenko , Stan Sc

Ping Hu 42 Nov 30, 2022
EMNLP 2021 Adapting Language Models for Zero-shot Learning by Meta-tuning on Dataset and Prompt Collections

Adapting Language Models for Zero-shot Learning by Meta-tuning on Dataset and Prompt Collections Ruiqi Zhong, Kristy Lee*, Zheng Zhang*, Dan Klein EMN

Ruiqi Zhong 42 Nov 03, 2022
Official implementation of "GS-WGAN: A Gradient-Sanitized Approach for Learning Differentially Private Generators" (NeurIPS 2020)

GS-WGAN This repository contains the implementation for GS-WGAN: A Gradient-Sanitized Approach for Learning Differentially Private Generators (NeurIPS

46 Nov 09, 2022
Multi-view 3D reconstruction using neural rendering. Unofficial implementation of UNISURF, VolSDF, NeuS and more.

Volume rendering + 3D implicit surface Showcase What? previous: surface rendering; now: volume rendering previous: NeRF's volume density; now: implici

Jianfei Guo 682 Jan 04, 2023
Object-aware Contrastive Learning for Debiased Scene Representation

Object-aware Contrastive Learning Official PyTorch implementation of "Object-aware Contrastive Learning for Debiased Scene Representation" by Sangwoo

43 Dec 14, 2022
[ICCV 2021 Oral] Just Ask: Learning to Answer Questions from Millions of Narrated Videos

Just Ask: Learning to Answer Questions from Millions of Narrated Videos Webpage • Demo • Paper This repository provides the code for our paper, includ

Antoine Yang 87 Jan 05, 2023
Repository for the semantic WMI loss

Installation: pip install -e . Installing DL2: First clone DL2 in a separate directory and install it using the following commands: git clone https:/

Nick Hoernle 4 Sep 15, 2022
Riemann Noise Injection With PyTorch

Riemann Noise Injection - PyTorch A module for modeling GAN noise injection based on Riemann geometry, as described in Ruili Feng, Deli Zhao, and Zhen

2 May 27, 2022
Image restoration with neural networks but without learning.

Warning! The optimization may not converge on some GPUs. We've personally experienced issues on Tesla V100 and P40 GPUs. When running the code, make s

Dmitry Ulyanov 7.4k Jan 01, 2023
PyTorch implementation for paper Neural Marching Cubes.

NMC PyTorch implementation for paper Neural Marching Cubes, Zhiqin Chen, Hao Zhang. Paper | Supplementary Material (to be updated) Citation If you fin

Zhiqin Chen 109 Dec 27, 2022
Survival analysis (SA) is a well-known statistical technique for the study of temporal events.

DAGSurv Survival analysis (SA) is a well-known statistical technique for the study of temporal events. In SA, time-to-an-event data is modeled using a

Rahul Kukreja 1 Sep 05, 2022
Cooperative Driving Dataset: a dataset for multi-agent driving scenarios

Cooperative Driving Dataset (CODD) The Cooperative Driving dataset is a synthetic dataset generated using CARLA that contains lidar data from multiple

Eduardo Henrique Arnold 124 Dec 28, 2022
Train CNNs for the fruits360 data set in NTOU CS「Machine Vision」class.

CNNs fruits360 Train CNNs for the fruits360 data set in NTOU CS「Machine Vision」class. CNN on a pretrained model Build a CNN on a pretrained model, Res

Ricky Chuang 1 Mar 07, 2022
An implementation of EWC with PyTorch

EWC.pytorch An implementation of Elastic Weight Consolidation (EWC), proposed in James Kirkpatrick et al. Overcoming catastrophic forgetting in neural

Ryuichiro Hataya 166 Dec 22, 2022
CS50x-AI - Artificial Intelligence with Python from Harvard University

CS50x-AI Artificial Intelligence with Python from Harvard University 📖 Table of

Hosein Damavandi 6 Aug 22, 2022
Quasi-Dense Similarity Learning for Multiple Object Tracking, CVPR 2021 (Oral)

Quasi-Dense Tracking This is the offical implementation of paper Quasi-Dense Similarity Learning for Multiple Object Tracking. We present a trailer th

ETH VIS Research Group 327 Dec 27, 2022