RoIAlign & crop_and_resize for PyTorch

Related tags

Deep Learningpytorch
Overview

RoIAlign for PyTorch

This is a PyTorch version of RoIAlign. This implementation is based on crop_and_resize and supports both forward and backward on CPU and GPU.

NOTE: Thanks meikuam for updating this repo for PyTorch 1.0. You can find the original version for torch <= 0.4.1 in pytorch_0.4 branch.

Introduction

The crop_and_resize function is ported from tensorflow, and has the same interface with tensorflow version, except the input feature map should be in NCHW order in PyTorch. They also have the same output value (error < 1e-5) for both forward and backward as we expected, see the comparision in test.py.

Note: Document of crop_and_resize can be found here. And RoIAlign is a wrap of crop_and_resize that uses boxes with unnormalized (x1, y1, x2, y2) as input (while crop_and_resize use normalized (y1, x1, y2, x2) as input). See more details about the difference of RoIAlign and crop_and_resize in tensorpack.

Warning: Currently it only works using the default GPU (index 0)

Usage

  • Install and test

    python setup.py install
    ./test.sh
    
  • Use RoIAlign or crop_and_resize

    Since PyTorch 1.2.0 Legacy autograd function with non-static forward method is deprecated. We use new-style autograd function with static forward method. Example:

    import torch
    from roi_align import RoIAlign      # RoIAlign module
    from roi_align import CropAndResize # crop_and_resize module
    
    # input feature maps (suppose that we have batch_size==2)
    image = torch.arange(0., 49).view(1, 1, 7, 7).repeat(2, 1, 1, 1)
    image[0] += 10
    print('image: ', image)
    
    
    # for example, we have two bboxes with coords xyxy (first with batch_id=0, second with batch_id=1).
    boxes = torch.Tensor([[1, 0, 5, 4],
                         [0.5, 3.5, 4, 7]])
    
    box_index = torch.tensor([0, 1], dtype=torch.int) # index of bbox in batch
    
    # RoIAlign layer with crop sizes:
    crop_height = 4
    crop_width = 4
    roi_align = RoIAlign(crop_height, crop_width)
    
    # make crops:
    crops = roi_align(image, boxes, box_index)
    
    print('crops:', crops)

    Output:

    image:  tensor([[[[10., 11., 12., 13., 14., 15., 16.],
          [17., 18., 19., 20., 21., 22., 23.],
          [24., 25., 26., 27., 28., 29., 30.],
          [31., 32., 33., 34., 35., 36., 37.],
          [38., 39., 40., 41., 42., 43., 44.],
          [45., 46., 47., 48., 49., 50., 51.],
          [52., 53., 54., 55., 56., 57., 58.]]],
    
    
        [[[ 0.,  1.,  2.,  3.,  4.,  5.,  6.],
          [ 7.,  8.,  9., 10., 11., 12., 13.],
          [14., 15., 16., 17., 18., 19., 20.],
          [21., 22., 23., 24., 25., 26., 27.],
          [28., 29., 30., 31., 32., 33., 34.],
          [35., 36., 37., 38., 39., 40., 41.],
          [42., 43., 44., 45., 46., 47., 48.]]]])
          
    crops: tensor([[[[11.0000, 12.0000, 13.0000, 14.0000],
              [18.0000, 19.0000, 20.0000, 21.0000],
              [25.0000, 26.0000, 27.0000, 28.0000],
              [32.0000, 33.0000, 34.0000, 35.0000]]],
    
    
            [[[24.5000, 25.3750, 26.2500, 27.1250],
              [30.6250, 31.5000, 32.3750, 33.2500],
              [36.7500, 37.6250, 38.5000, 39.3750],
              [ 0.0000,  0.0000,  0.0000,  0.0000]]]])
Owner
Long Chen
Computer Vision
Long Chen
A library for low-memory inferencing in PyTorch.

Pylomin Pylomin (PYtorch LOw-Memory INference) is a library for low-memory inferencing in PyTorch. Installation ... Usage For example, the following c

3 Oct 26, 2022
A python implementation of Deep-Image-Analogy based on pytorch.

Deep-Image-Analogy This project is a python implementation of Deep Image Analogy.https://arxiv.org/abs/1705.01088. Some results Requirements python 3

Peng Lu 171 Dec 14, 2022
Towards Boosting the Accuracy of Non-Latin Scene Text Recognition

Convolutional Recurrent Neural Network + CTCLoss | STAR-Net Code for paper "Towards Boosting the Accuracy of Non-Latin Scene Text Recognition" Depende

Sanjana Gunna 7 Aug 07, 2022
Repository for "Toward Practical Monocular Indoor Depth Estimation" (CVPR 2022)

Toward Practical Monocular Indoor Depth Estimation Cho-Ying Wu, Jialiang Wang, Michael Hall, Ulrich Neumann, Shuochen Su [arXiv] [project site] DistDe

Meta Research 122 Dec 13, 2022
Contra is a lightweight, production ready Tensorflow alternative for solving time series prediction challenges with AI

Contra AI Engine A lightweight, production ready Tensorflow alternative developed by Styvio styvio.com » How to Use · Report Bug · Request Feature Tab

styvio 14 May 25, 2022
Official repository for HOTR: End-to-End Human-Object Interaction Detection with Transformers (CVPR'21, Oral Presentation)

Official PyTorch Implementation for HOTR: End-to-End Human-Object Interaction Detection with Transformers (CVPR'2021, Oral Presentation) HOTR: End-to-

Kakao Brain 114 Nov 28, 2022
This project aims to segment 4 common retinal lesions from Fundus Images.

This project aims to segment 4 common retinal lesions from Fundus Images.

Husam Nujaim 1 Oct 10, 2021
Generating Anime Images by Implementing Deep Convolutional Generative Adversarial Networks paper

AnimeGAN - Deep Convolutional Generative Adverserial Network PyTorch implementation of DCGAN introduced in the paper: Unsupervised Representation Lear

Rohit Kukreja 23 Jul 21, 2022
[UNMAINTAINED] Automated machine learning for analytics & production

auto_ml Automated machine learning for production and analytics Installation pip install auto_ml Getting started from auto_ml import Predictor from au

Preston Parry 1.6k Jan 02, 2023
Code for TIP 2017 paper --- Illumination Decomposition for Photograph with Multiple Light Sources.

Illumination_Decomposition Code for TIP 2017 paper --- Illumination Decomposition for Photograph with Multiple Light Sources. This code implements the

QAY 7 Nov 15, 2020
RL Algorithms with examples in Python / Pytorch / Unity ML agents

Reinforcement Learning Project This project was created to make it easier to get started with Reinforcement Learning. It now contains: An implementati

Rogier Wachters 3 Aug 19, 2022
Reference PyTorch implementation of "End-to-end optimized image compression with competition of prior distributions"

PyTorch reference implementation of "End-to-end optimized image compression with competition of prior distributions" by Benoit Brummer and Christophe

Benoit Brummer 6 Jun 16, 2022
Shape-Adaptive Selection and Measurement for Oriented Object Detection

Source Code of AAAI22-2171 Introduction The source code includes training and inference procedures for the proposed method of the paper submitted to t

houliping 24 Nov 29, 2022
Official implementation of NeuralFusion: Online Depth Map Fusion in Latent Space

NeuralFusion This is the official implementation of NeuralFusion: Online Depth Map Fusion in Latent Space. We provide code to train the proposed pipel

53 Jan 01, 2023
Clustering with variational Bayes and population Monte Carlo

pypmc pypmc is a python package focusing on adaptive importance sampling. It can be used for integration and sampling from a user-defined target densi

45 Feb 06, 2022
Beta Shapley: a Unified and Noise-reduced Data Valuation Framework for Machine Learning

Beta Shapley: a Unified and Noise-reduced Data Valuation Framework for Machine Learning This repository provides an implementation of the paper Beta S

Yongchan Kwon 28 Nov 10, 2022
Intel® Neural Compressor is an open-source Python library running on Intel CPUs and GPUs

Intel® Neural Compressor targeting to provide unified APIs for network compression technologies, such as low precision quantization, sparsity, pruning, knowledge distillation, across different deep l

Intel Corporation 846 Jan 04, 2023
TakeInfoatNistforICS - Take Information in NIST NVD for ICS

Take Information in NIST NVD for ICS This project developed with Python. When yo

5 Sep 05, 2022
An investigation project for SISR.

SISR-Survey An investigation project for SISR. This repository is an official project of the paper "From Beginner to Master: A Survey for Deep Learnin

Juncheng Li 79 Oct 20, 2022
Official Implementation of CoSMo: Content-Style Modulation for Image Retrieval with Text Feedback

CoSMo.pytorch Official Implementation of CoSMo: Content-Style Modulation for Image Retrieval with Text Feedback, Seungmin Lee*, Dongwan Kim*, Bohyung

Seung Min Lee 54 Dec 08, 2022