RoIAlign & crop_and_resize for PyTorch

Related tags

Deep Learningpytorch
Overview

RoIAlign for PyTorch

This is a PyTorch version of RoIAlign. This implementation is based on crop_and_resize and supports both forward and backward on CPU and GPU.

NOTE: Thanks meikuam for updating this repo for PyTorch 1.0. You can find the original version for torch <= 0.4.1 in pytorch_0.4 branch.

Introduction

The crop_and_resize function is ported from tensorflow, and has the same interface with tensorflow version, except the input feature map should be in NCHW order in PyTorch. They also have the same output value (error < 1e-5) for both forward and backward as we expected, see the comparision in test.py.

Note: Document of crop_and_resize can be found here. And RoIAlign is a wrap of crop_and_resize that uses boxes with unnormalized (x1, y1, x2, y2) as input (while crop_and_resize use normalized (y1, x1, y2, x2) as input). See more details about the difference of RoIAlign and crop_and_resize in tensorpack.

Warning: Currently it only works using the default GPU (index 0)

Usage

  • Install and test

    python setup.py install
    ./test.sh
    
  • Use RoIAlign or crop_and_resize

    Since PyTorch 1.2.0 Legacy autograd function with non-static forward method is deprecated. We use new-style autograd function with static forward method. Example:

    import torch
    from roi_align import RoIAlign      # RoIAlign module
    from roi_align import CropAndResize # crop_and_resize module
    
    # input feature maps (suppose that we have batch_size==2)
    image = torch.arange(0., 49).view(1, 1, 7, 7).repeat(2, 1, 1, 1)
    image[0] += 10
    print('image: ', image)
    
    
    # for example, we have two bboxes with coords xyxy (first with batch_id=0, second with batch_id=1).
    boxes = torch.Tensor([[1, 0, 5, 4],
                         [0.5, 3.5, 4, 7]])
    
    box_index = torch.tensor([0, 1], dtype=torch.int) # index of bbox in batch
    
    # RoIAlign layer with crop sizes:
    crop_height = 4
    crop_width = 4
    roi_align = RoIAlign(crop_height, crop_width)
    
    # make crops:
    crops = roi_align(image, boxes, box_index)
    
    print('crops:', crops)

    Output:

    image:  tensor([[[[10., 11., 12., 13., 14., 15., 16.],
          [17., 18., 19., 20., 21., 22., 23.],
          [24., 25., 26., 27., 28., 29., 30.],
          [31., 32., 33., 34., 35., 36., 37.],
          [38., 39., 40., 41., 42., 43., 44.],
          [45., 46., 47., 48., 49., 50., 51.],
          [52., 53., 54., 55., 56., 57., 58.]]],
    
    
        [[[ 0.,  1.,  2.,  3.,  4.,  5.,  6.],
          [ 7.,  8.,  9., 10., 11., 12., 13.],
          [14., 15., 16., 17., 18., 19., 20.],
          [21., 22., 23., 24., 25., 26., 27.],
          [28., 29., 30., 31., 32., 33., 34.],
          [35., 36., 37., 38., 39., 40., 41.],
          [42., 43., 44., 45., 46., 47., 48.]]]])
          
    crops: tensor([[[[11.0000, 12.0000, 13.0000, 14.0000],
              [18.0000, 19.0000, 20.0000, 21.0000],
              [25.0000, 26.0000, 27.0000, 28.0000],
              [32.0000, 33.0000, 34.0000, 35.0000]]],
    
    
            [[[24.5000, 25.3750, 26.2500, 27.1250],
              [30.6250, 31.5000, 32.3750, 33.2500],
              [36.7500, 37.6250, 38.5000, 39.3750],
              [ 0.0000,  0.0000,  0.0000,  0.0000]]]])
Owner
Long Chen
Computer Vision
Long Chen
SSL_SLAM2: Lightweight 3-D Localization and Mapping for Solid-State LiDAR (mapping and localization separated) ICRA 2021

SSL_SLAM2 Lightweight 3-D Localization and Mapping for Solid-State LiDAR (Intel Realsense L515 as an example) This repo is an extension work of SSL_SL

Wang Han 王晗 1.3k Jan 08, 2023
Frequency Spectrum Augmentation Consistency for Domain Adaptive Object Detection

Frequency Spectrum Augmentation Consistency for Domain Adaptive Object Detection Main requirements torch = 1.0 torchvision = 0.2.0 Python 3 Environm

15 Apr 04, 2022
TrackTech: Real-time tracking of subjects and objects on multiple cameras

TrackTech: Real-time tracking of subjects and objects on multiple cameras This project is part of the 2021 spring bachelor final project of the Bachel

5 Jun 17, 2022
Simple and Robust Loss Design for Multi-Label Learning with Missing Labels

Simple and Robust Loss Design for Multi-Label Learning with Missing Labels Official PyTorch Implementation of the paper Simple and Robust Loss Design

Xinyu Huang 28 Oct 27, 2022
A parametric soroban written with CADQuery.

A parametric soroban written in CADQuery The purpose of this project is to demonstrate how "code CAD" can be intuitive to learn. See soroban.py for a

Lee 4 Aug 13, 2022
PyTorch Implementation of AnimeGANv2

PyTorch implementation of AnimeGANv2

4k Jan 07, 2023
Interactive Image Segmentation via Backpropagating Refinement Scheme

Won-Dong Jang and Chang-Su Kim, Interactive Image Segmentation via Backpropagating Refinement Scheme, CVPR 2019

Won-Dong Jang 85 Sep 15, 2022
A setup script to generate ITK Python Wheels

ITK Python Package This project provides a setup.py script to build ITK Python binary packages and infrastructure to build ITK external module Python

Insight Software Consortium 59 Dec 14, 2022
Implementation supporting the ICCV 2017 paper "GANs for Biological Image Synthesis"

GANs for Biological Image Synthesis This codes implements the ICCV-2017 paper "GANs for Biological Image Synthesis". The paper and its supplementary m

Anton Osokin 95 Nov 25, 2022
scikit-learn: machine learning in Python

scikit-learn is a Python module for machine learning built on top of SciPy and is distributed under the 3-Clause BSD license. The project was started

scikit-learn 52.5k Jan 08, 2023
[ICCV 2021] Amplitude-Phase Recombination: Rethinking Robustness of Convolutional Neural Networks in Frequency Domain

Amplitude-Phase Recombination (ICCV'21) Official PyTorch implementation of "Amplitude-Phase Recombination: Rethinking Robustness of Convolutional Neur

Guangyao Chen 53 Oct 05, 2022
InsCLR: Improving Instance Retrieval with Self-Supervision

InsCLR: Improving Instance Retrieval with Self-Supervision This is an official PyTorch implementation of the InsCLR paper. Download Dataset Dataset Im

Zelu Deng 25 Aug 30, 2022
Lbl2Vec learns jointly embedded label, document and word vectors to retrieve documents with predefined topics from an unlabeled document corpus.

Lbl2Vec Lbl2Vec is an algorithm for unsupervised document classification and unsupervised document retrieval. It automatically generates jointly embed

sebis - TUM - Germany 61 Dec 20, 2022
Code for "Single-view robot pose and joint angle estimation via render & compare", CVPR 2021 (Oral).

Single-view robot pose and joint angle estimation via render & compare Yann Labbé, Justin Carpentier, Mathieu Aubry, Josef Sivic CVPR: Conference on C

Yann Labbé 51 Oct 14, 2022
Implements MLP-Mixer: An all-MLP Architecture for Vision.

MLP-Mixer-CIFAR10 This repository implements MLP-Mixer as proposed in MLP-Mixer: An all-MLP Architecture for Vision. The paper introduces an all MLP (

Sayak Paul 51 Jan 04, 2023
Myia prototyping

Myia Myia is a new differentiable programming language. It aims to support large scale high performance computations (e.g. linear algebra) and their g

Mila 456 Nov 07, 2022
Real-time Joint Semantic Reasoning for Autonomous Driving

MultiNet MultiNet is able to jointly perform road segmentation, car detection and street classification. The model achieves real-time speed and state-

Marvin Teichmann 518 Dec 12, 2022
OpenMMLab Image Classification Toolbox and Benchmark

Introduction English | 简体中文 MMClassification is an open source image classification toolbox based on PyTorch. It is a part of the OpenMMLab project. D

OpenMMLab 1.8k Jan 03, 2023
Automated Hyperparameter Optimization Competition

QQ浏览器2021AI算法大赛 - 自动超参数优化竞赛 ACM CIKM 2021 AnalyticCup 在信息流推荐业务场景中普遍存在模型或策略效果依赖于“超参数”的问题,而“超参数"的设定往往依赖人工经验调参,不仅效率低下维护成本高,而且难以实现更优效果。因此,本次赛题以超参数优化为主题,从真

20 Dec 09, 2021
Rust bindings for the C++ api of PyTorch.

tch-rs Rust bindings for the C++ api of PyTorch. The goal of the tch crate is to provide some thin wrappers around the C++ PyTorch api (a.k.a. libtorc

Laurent Mazare 2.3k Dec 30, 2022