eXPeditious Data Transfer

Overview

xpdt: eXPeditious Data Transfer

PyPI version

About

xpdt is (yet another) language for defining data-types and generating code for serializing and deserializing them. It aims to produce code with little or no overhead and is based on fixed-length representations which allows for zero-copy deserialization and (at-most-)one-copy writes (source to buffer).

The generated C code, in particular, is highly optimized and often permits the elimination of data-copying for writes and enables optimizations such as loop-unrolling for fixed-length objects. This can lead to read speeds in excess of 500 million objects per second (~1.8 nsec per object).

Examples

The xpdt source language looks similar to C struct definitions:

struct timestamp {
	u32	tv_sec;
	u32	tv_nsec;
};

struct point {
	i32	x;
	i32	y;
	i32	z;
};

struct line {
	timestamp	time;
	point		line_start;
	point		line_end;
	bytes		comment;
};

Fixed width integer types from 8 to 128 bit are supported, along with the bytes type, which is a variable-length sequence of bytes.

Target Languages

The following target languages are currently supported:

  • C
  • Python

The C code is very highly optimized.

The Python code is about as well optimized for CPython as I can make it. It uses typed NamedTuple for objects, which has some small overhead over regular tuples, and it uses struct.Struct to do the packing/unpacking. I have also code-golfed the generated bytecodes down to what I think is minimal given the design constraints. As a result, performance of the pure Python code is comparable to a JSON library implemented in C or Rust.

For better performance in Python, it may be desirable to develop a Cython target. In some instances CFFI structs may be more performant since they can avoid the creation/destruction of an object for each record.

Target languages are implemented purely as jinja2 templates.

Serialization format

The serialization format for fixed-length objects is simply a packed C struct.

For any object which contains bytes type fields:

  • a 32bit unsigned record length is prepended to the struct
  • all bytes type fields are converted to u32 and contain the length of the bytes
  • all bytes contents are appended after the struct in the order in which they appear

For example, following the example above, the serialization would be:

u32 tot_len # = 41
u32 time.tv_sec
u32 time.tv_usec
i32 line_start.x
i32 line_start.y
i32 line_start.z
i32 line_end.x
i32 line_end.y
i32 line_end.z
u32 comment # = 5
u8 'H'
u8 'e'
u8 'l'
u8 'l'
u8 'o'

Features

The feature-set is, as of now, pretty slim.

There are no array / sequence / map types, and no keyed unions.

Support for such things may be added in future provided that suitable implementations exist. An implementation is suitable if:

  • It admits a zero (or close to zero) overhead implementation
  • it causes no overhead when the feature isn't being used

License

The compiler is released under the GPLv3.

The C support code/headers are released under the MIT license.

The generated code is yours.

You might also like...
Official code for the CVPR 2021 paper "How Well Do Self-Supervised Models Transfer?"

How Well Do Self-Supervised Models Transfer? This repository hosts the code for the experiments in the CVPR 2021 paper How Well Do Self-Supervised Mod

Implementation of Cross Transformer for spatially-aware few-shot transfer, in Pytorch
Implementation of Cross Transformer for spatially-aware few-shot transfer, in Pytorch

Cross Transformers - Pytorch (wip) Implementation of Cross Transformer for spatially-aware few-shot transfer, in Pytorch Install $ pip install cross-t

Neural style transfer as a class in PyTorch

pt-styletransfer Neural style transfer as a class in PyTorch Based on: https://github.com/alexis-jacq/Pytorch-Tutorials Adds: StyleTransferNet as a cl

Offcial repository for the IEEE ICRA 2021 paper Auto-Tuned Sim-to-Real Transfer.

Offcial repository for the IEEE ICRA 2021 paper Auto-Tuned Sim-to-Real Transfer.

transfer attack; adversarial examples; black-box attack; unrestricted Adversarial Attacks on ImageNet; CVPR2021 天池黑盒竞赛
transfer attack; adversarial examples; black-box attack; unrestricted Adversarial Attacks on ImageNet; CVPR2021 天池黑盒竞赛

transfer_adv CVPR-2021 AIC-VI: unrestricted Adversarial Attacks on ImageNet CVPR2021 安全AI挑战者计划第六期赛道2:ImageNet无限制对抗攻击 介绍 : 深度神经网络已经在各种视觉识别问题上取得了最先进的性能。

PyKale is a PyTorch library for multimodal learning and transfer learning as well as deep learning and dimensionality reduction on graphs, images, texts, and videos
PyKale is a PyTorch library for multimodal learning and transfer learning as well as deep learning and dimensionality reduction on graphs, images, texts, and videos

PyKale is a PyTorch library for multimodal learning and transfer learning as well as deep learning and dimensionality reduction on graphs, images, texts, and videos. By adopting a unified pipeline-based API design, PyKale enforces standardization and minimalism, via reusing existing resources, reducing repetitions and redundancy, and recycling learning models across areas.

Two-Stage Peer-Regularized Feature Recombination for Arbitrary Image Style Transfer
Two-Stage Peer-Regularized Feature Recombination for Arbitrary Image Style Transfer

Two-Stage Peer-Regularized Feature Recombination for Arbitrary Image Style Transfer Paper on arXiv Public PyTorch implementation of two-stage peer-reg

Instant Real-Time Example-Based Style Transfer to Facial Videos
Instant Real-Time Example-Based Style Transfer to Facial Videos

FaceBlit: Instant Real-Time Example-Based Style Transfer to Facial Videos The official implementation of FaceBlit: Instant Real-Time Example-Based Sty

An implementation of
An implementation of "Optimal Textures: Fast and Robust Texture Synthesis and Style Transfer through Optimal Transport"

Optex An implementation of Optimal Textures: Fast and Robust Texture Synthesis and Style Transfer through Optimal Transport for TU Delft CS4240. You c

Releases(v0.0.5)
  • v0.0.5(Jan 6, 2022)

  • v0.0.4(Jan 6, 2022)

  • v0.0.3(Dec 21, 2021)

    First cut of multiplexed files support, where you can read/write structs of different types to and from the same file. A discriminator field and record length is prepended to each record.

    Fields whose names begin with underscore are now considered hidden/reserved fields. They can be use to add padding and force specific alignments.

    Improve the error messages in the tokenization stage.

    Numerous improvements to the C and python code. Added support for new types: bytearray, stringlist, intstack.

    Source code(tar.gz)
    Source code(zip)
  • v0.0.2(Jun 27, 2021)

    A new string type was added, as well as the ability to add reserved/padding fields which are set to all zeroes.

    Some language-breaking changes were made: the "type" keyword changed to "struct" and the signed integer types were renamed to the more conventional "i8" ... "i64".

    Source code(tar.gz)
    Source code(zip)
Owner
Gianni Tedesco
Computer programming is fun.
Gianni Tedesco
Code To Tune or Not To Tune? Zero-shot Models for Legal Case Entailment.

COLIEE 2021 - task 2: Legal Case Entailment This repository contains the code to reproduce NeuralMind's submissions to COLIEE 2021 presented in the pa

NeuralMind 13 Dec 16, 2022
Simulation-based performance analysis of server-less Blockchain-enabled Federated Learning

Blockchain-enabled Server-less Federated Learning Repository containing the files used to reproduce the results of the publication "Blockchain-enabled

Francesc Wilhelmi 9 Sep 27, 2022
How to Learn a Domain Adaptive Event Simulator? ACM MM, 2021

LETGAN How to Learn a Domain Adaptive Event Simulator? ACM MM 2021 Running Environment: pytorch=1.4, 1 NVIDIA-1080TI. More details can be found in pap

CVTEAM 4 Sep 20, 2022
A visualization tool to show a TensorFlow's graph like TensorBoard

tfgraphviz tfgraphviz is a module to visualize a TensorFlow's data flow graph like TensorBoard using Graphviz. tfgraphviz enables to provide a visuali

44 Nov 09, 2022
Multi-modal Content Creation Model Training Infrastructure including the FACT model (AI Choreographer) implementation.

AI Choreographer: Music Conditioned 3D Dance Generation with AIST++ [ICCV-2021]. Overview This package contains the model implementation and training

Google Research 365 Dec 30, 2022
Metadata-Extractor - Metadata Extractor Script can be used to read in exif metadata

Metadata Extractor The exifextract script can be used to read in exif metadata f

1 Feb 16, 2022
Source code for our Paper "Learning in High-Dimensional Feature Spaces Using ANOVA-Based Matrix-Vector Multiplication"

NFFT4ANOVA Source code for our Paper "Learning in High-Dimensional Feature Spaces Using ANOVA-Based Matrix-Vector Multiplication" This package uses th

Theresa Wagner 1 Aug 10, 2022
Train CPPNs as a Generative Model, using Generative Adversarial Networks and Variational Autoencoder techniques to produce high resolution images.

cppn-gan-vae tensorflow Train Compositional Pattern Producing Network as a Generative Model, using Generative Adversarial Networks and Variational Aut

hardmaru 343 Dec 29, 2022
Contrastive Multi-View Representation Learning on Graphs

Contrastive Multi-View Representation Learning on Graphs This work introduces a self-supervised approach based on contrastive multi-view learning to l

Kaveh 208 Dec 23, 2022
Semi Supervised Learning for Medical Image Segmentation, a collection of literature reviews and code implementations.

Semi-supervised-learning-for-medical-image-segmentation. Recently, semi-supervised image segmentation has become a hot topic in medical image computin

Healthcare Intelligence Laboratory 1.3k Jan 03, 2023
Show Me the Whole World: Towards Entire Item Space Exploration for Interactive Personalized Recommendations

HierarchicyBandit Introduction This is the implementation of WSDM 2022 paper : Show Me the Whole World: Towards Entire Item Space Exploration for Inte

yu song 5 Sep 09, 2022
QAHOI: Query-Based Anchors for Human-Object Interaction Detection (paper)

QAHOI QAHOI: Query-Based Anchors for Human-Object Interaction Detection (paper) Requirements PyTorch = 1.5.1 torchvision = 0.6.1 pip install -r requ

38 Dec 29, 2022
Official implementation of the MM'21 paper Constrained Graphic Layout Generation via Latent Optimization

[MM'21] Constrained Graphic Layout Generation via Latent Optimization This repository provides the official code for the paper "Constrained Graphic La

Kotaro Kikuchi 73 Dec 27, 2022
Finetune SSL models for MOS prediction

Finetune SSL models for MOS prediction This is code for our paper under review for ICASSP 2022: "Generalization Ability of MOS Prediction Networks" Er

Yamagishi and Echizen Laboratories, National Institute of Informatics 32 Nov 22, 2022
Temporal Dynamic Convolutional Neural Network for Text-Independent Speaker Verification and Phonemetic Analysis

TDY-CNN for Text-Independent Speaker Verification Official implementation of Temporal Dynamic Convolutional Neural Network for Text-Independent Speake

Seong-Hu Kim 16 Oct 17, 2022
Code and data of the ACL 2021 paper: Few-Shot Text Ranking with Meta Adapted Synthetic Weak Supervision

MetaAdaptRank This repository provides the implementation of meta-learning to reweight synthetic weak supervision data described in the paper Few-Shot

THUNLP 5 Jun 16, 2022
Large scale and asynchronous Hyperparameter Optimization at your fingertip.

Syne Tune This package provides state-of-the-art distributed hyperparameter optimizers (HPO) where trials can be evaluated with several backend option

Amazon Web Services - Labs 236 Jan 01, 2023
Official pytorch implementation of DeformSyncNet: Deformation Transfer via Synchronized Shape Deformation Spaces

DeformSyncNet: Deformation Transfer via Synchronized Shape Deformation Spaces Minhyuk Sung*, Zhenyu Jiang*, Panos Achlioptas, Niloy J. Mitra, Leonidas

Zhenyu Jiang 21 Aug 30, 2022
CZU-MHAD: A multimodal dataset for human action recognition utilizing a depth camera and 10 wearable inertial sensors

CZU-MHAD: A multimodal dataset for human action recognition utilizing a depth camera and 10 wearable inertial sensors   In order to facilitate the res

yujmo 11 Dec 12, 2022
Seq2seq - Sequence to Sequence Learning with Keras

Seq2seq Sequence to Sequence Learning with Keras Hi! You have just found Seq2Seq. Seq2Seq is a sequence to sequence learning add-on for the python dee

Fariz Rahman 3.1k Dec 18, 2022