eXPeditious Data Transfer

Overview

xpdt: eXPeditious Data Transfer

PyPI version

About

xpdt is (yet another) language for defining data-types and generating code for serializing and deserializing them. It aims to produce code with little or no overhead and is based on fixed-length representations which allows for zero-copy deserialization and (at-most-)one-copy writes (source to buffer).

The generated C code, in particular, is highly optimized and often permits the elimination of data-copying for writes and enables optimizations such as loop-unrolling for fixed-length objects. This can lead to read speeds in excess of 500 million objects per second (~1.8 nsec per object).

Examples

The xpdt source language looks similar to C struct definitions:

struct timestamp {
	u32	tv_sec;
	u32	tv_nsec;
};

struct point {
	i32	x;
	i32	y;
	i32	z;
};

struct line {
	timestamp	time;
	point		line_start;
	point		line_end;
	bytes		comment;
};

Fixed width integer types from 8 to 128 bit are supported, along with the bytes type, which is a variable-length sequence of bytes.

Target Languages

The following target languages are currently supported:

  • C
  • Python

The C code is very highly optimized.

The Python code is about as well optimized for CPython as I can make it. It uses typed NamedTuple for objects, which has some small overhead over regular tuples, and it uses struct.Struct to do the packing/unpacking. I have also code-golfed the generated bytecodes down to what I think is minimal given the design constraints. As a result, performance of the pure Python code is comparable to a JSON library implemented in C or Rust.

For better performance in Python, it may be desirable to develop a Cython target. In some instances CFFI structs may be more performant since they can avoid the creation/destruction of an object for each record.

Target languages are implemented purely as jinja2 templates.

Serialization format

The serialization format for fixed-length objects is simply a packed C struct.

For any object which contains bytes type fields:

  • a 32bit unsigned record length is prepended to the struct
  • all bytes type fields are converted to u32 and contain the length of the bytes
  • all bytes contents are appended after the struct in the order in which they appear

For example, following the example above, the serialization would be:

u32 tot_len # = 41
u32 time.tv_sec
u32 time.tv_usec
i32 line_start.x
i32 line_start.y
i32 line_start.z
i32 line_end.x
i32 line_end.y
i32 line_end.z
u32 comment # = 5
u8 'H'
u8 'e'
u8 'l'
u8 'l'
u8 'o'

Features

The feature-set is, as of now, pretty slim.

There are no array / sequence / map types, and no keyed unions.

Support for such things may be added in future provided that suitable implementations exist. An implementation is suitable if:

  • It admits a zero (or close to zero) overhead implementation
  • it causes no overhead when the feature isn't being used

License

The compiler is released under the GPLv3.

The C support code/headers are released under the MIT license.

The generated code is yours.

You might also like...
Official code for the CVPR 2021 paper "How Well Do Self-Supervised Models Transfer?"

How Well Do Self-Supervised Models Transfer? This repository hosts the code for the experiments in the CVPR 2021 paper How Well Do Self-Supervised Mod

Implementation of Cross Transformer for spatially-aware few-shot transfer, in Pytorch
Implementation of Cross Transformer for spatially-aware few-shot transfer, in Pytorch

Cross Transformers - Pytorch (wip) Implementation of Cross Transformer for spatially-aware few-shot transfer, in Pytorch Install $ pip install cross-t

Neural style transfer as a class in PyTorch

pt-styletransfer Neural style transfer as a class in PyTorch Based on: https://github.com/alexis-jacq/Pytorch-Tutorials Adds: StyleTransferNet as a cl

Offcial repository for the IEEE ICRA 2021 paper Auto-Tuned Sim-to-Real Transfer.

Offcial repository for the IEEE ICRA 2021 paper Auto-Tuned Sim-to-Real Transfer.

transfer attack; adversarial examples; black-box attack; unrestricted Adversarial Attacks on ImageNet; CVPR2021 天池黑盒竞赛
transfer attack; adversarial examples; black-box attack; unrestricted Adversarial Attacks on ImageNet; CVPR2021 天池黑盒竞赛

transfer_adv CVPR-2021 AIC-VI: unrestricted Adversarial Attacks on ImageNet CVPR2021 安全AI挑战者计划第六期赛道2:ImageNet无限制对抗攻击 介绍 : 深度神经网络已经在各种视觉识别问题上取得了最先进的性能。

PyKale is a PyTorch library for multimodal learning and transfer learning as well as deep learning and dimensionality reduction on graphs, images, texts, and videos
PyKale is a PyTorch library for multimodal learning and transfer learning as well as deep learning and dimensionality reduction on graphs, images, texts, and videos

PyKale is a PyTorch library for multimodal learning and transfer learning as well as deep learning and dimensionality reduction on graphs, images, texts, and videos. By adopting a unified pipeline-based API design, PyKale enforces standardization and minimalism, via reusing existing resources, reducing repetitions and redundancy, and recycling learning models across areas.

Two-Stage Peer-Regularized Feature Recombination for Arbitrary Image Style Transfer
Two-Stage Peer-Regularized Feature Recombination for Arbitrary Image Style Transfer

Two-Stage Peer-Regularized Feature Recombination for Arbitrary Image Style Transfer Paper on arXiv Public PyTorch implementation of two-stage peer-reg

Instant Real-Time Example-Based Style Transfer to Facial Videos
Instant Real-Time Example-Based Style Transfer to Facial Videos

FaceBlit: Instant Real-Time Example-Based Style Transfer to Facial Videos The official implementation of FaceBlit: Instant Real-Time Example-Based Sty

An implementation of
An implementation of "Optimal Textures: Fast and Robust Texture Synthesis and Style Transfer through Optimal Transport"

Optex An implementation of Optimal Textures: Fast and Robust Texture Synthesis and Style Transfer through Optimal Transport for TU Delft CS4240. You c

Releases(v0.0.5)
  • v0.0.5(Jan 6, 2022)

  • v0.0.4(Jan 6, 2022)

  • v0.0.3(Dec 21, 2021)

    First cut of multiplexed files support, where you can read/write structs of different types to and from the same file. A discriminator field and record length is prepended to each record.

    Fields whose names begin with underscore are now considered hidden/reserved fields. They can be use to add padding and force specific alignments.

    Improve the error messages in the tokenization stage.

    Numerous improvements to the C and python code. Added support for new types: bytearray, stringlist, intstack.

    Source code(tar.gz)
    Source code(zip)
  • v0.0.2(Jun 27, 2021)

    A new string type was added, as well as the ability to add reserved/padding fields which are set to all zeroes.

    Some language-breaking changes were made: the "type" keyword changed to "struct" and the signed integer types were renamed to the more conventional "i8" ... "i64".

    Source code(tar.gz)
    Source code(zip)
Owner
Gianni Tedesco
Computer programming is fun.
Gianni Tedesco
Open-L2O: A Comprehensive and Reproducible Benchmark for Learning to Optimize Algorithms

Open-L2O This repository establishes the first comprehensive benchmark efforts of existing learning to optimize (L2O) approaches on a number of proble

VITA 161 Jan 02, 2023
Code repo for "Transformer on a Diet" paper

Transformer on a Diet Reference: C Wang, Z Ye, A Zhang, Z Zhang, A Smola. "Transformer on a Diet". arXiv preprint arXiv (2020). Installation pip insta

cgraywang 31 Sep 26, 2021
Accelerated SMPL operation, commonly used in generate 3D human mesh, STAR included.

SMPL2 An enchanced and accelerated SMPL operation which commonly used in 3D human mesh generation. It takes a poses, shapes, cam_trans as inputs, outp

JinTian 20 Oct 17, 2022
Code release for "Transferable Semantic Augmentation for Domain Adaptation" (CVPR 2021)

Transferable Semantic Augmentation for Domain Adaptation Code release for "Transferable Semantic Augmentation for Domain Adaptation" (CVPR 2021) Paper

66 Dec 16, 2022
You Only Hypothesize Once: Point Cloud Registration with Rotation-equivariant Descriptors

You Only Hypothesize Once: Point Cloud Registration with Rotation-equivariant Descriptors In this paper, we propose a novel local descriptor-based fra

Haiping Wang 80 Dec 15, 2022
Codebase for the Summary Loop paper at ACL2020

Summary Loop This repository contains the code for ACL2020 paper: The Summary Loop: Learning to Write Abstractive Summaries Without Examples. Training

Canny Lab @ The University of California, Berkeley 44 Nov 04, 2022
[ACM MM 2021] Joint Implicit Image Function for Guided Depth Super-Resolution

Joint Implicit Image Function for Guided Depth Super-Resolution This repository contains the code for: Joint Implicit Image Function for Guided Depth

hawkey 78 Dec 27, 2022
Image transformations designed for Scene Text Recognition (STR) data augmentation. Published at ICCV 2021 Workshop on Interactive Labeling and Data Augmentation for Vision.

Data Augmentation for Scene Text Recognition (ICCV 2021 Workshop) (Pronounced as "strog") Paper Arxiv Why it matters? Scene Text Recognition (STR) req

Rowel Atienza 152 Dec 28, 2022
Pytorch code for "Text-Independent Speaker Verification Using 3D Convolutional Neural Networks".

:speaker: Deep Learning & 3D Convolutional Neural Networks for Speaker Verification

Amirsina Torfi 114 Dec 18, 2022
Fully convolutional deep neural network to remove transparent overlays from images

Fully convolutional deep neural network to remove transparent overlays from images

Marc Belmont 1.1k Jan 06, 2023
OMNIVORE is a single vision model for many different visual modalities

Omnivore: A Single Model for Many Visual Modalities [paper][website] OMNIVORE is a single vision model for many different visual modalities. It learns

Meta Research 451 Dec 27, 2022
Everything you want about DP-Based Federated Learning, including Papers and Code. (Mechanism: Laplace or Gaussian, Dataset: femnist, shakespeare, mnist, cifar-10 and fashion-mnist. )

Differential Privacy (DP) Based Federated Learning (FL) Everything about DP-based FL you need is here. (所有你需要的DP-based FL的信息都在这里) Code Tip: the code o

wenzhu 83 Dec 24, 2022
A simple configurable bot for sending arXiv article alert by mail

arXiv-newsletter A simple configurable bot for sending arXiv article alert by mail. Prerequisites PyYAML=5.3.1 arxiv=1.4.0 Configuration All config

SXKDZ 21 Nov 09, 2022
Face recognize system

FRS Face_recognize_system This project contains my work that target on solving some problems of FRS: Face detection: Retinaface Face anti-spoofing: Fo

Tran Anh Tuan 4 Nov 18, 2021
Simple is not Easy: A Simple Strong Baseline for TextVQA and TextCaps[AAAI2021]

Simple is not Easy: A Simple Strong Baseline for TextVQA and TextCaps Here is the code for ssbassline model. We also provide OCR results/features/mode

ZephyrZhuQi 51 Nov 18, 2022
A flexible tool for creating, organizing, and sharing visualizations of live, rich data. Supports Torch and Numpy.

Visdom A flexible tool for creating, organizing, and sharing visualizations of live, rich data. Supports Python. Overview Concepts Setup Usage API To

FOSSASIA 9.4k Jan 07, 2023
[NeurIPS 2021] Source code for the paper "Qu-ANTI-zation: Exploiting Neural Network Quantization for Achieving Adversarial Outcomes"

Qu-ANTI-zation This repository contains the code for reproducing the results of our paper: Qu-ANTI-zation: Exploiting Quantization Artifacts for Achie

Secure AI Systems Lab 8 Mar 26, 2022
An efficient 3D semantic segmentation framework for Urban-scale point clouds like SensatUrban, Campus3D, etc.

An efficient 3D semantic segmentation framework for Urban-scale point clouds like SensatUrban, Campus3D, etc.

Zou 33 Jan 03, 2023
Offline Multi-Agent Reinforcement Learning Implementations: Solving Overcooked Game with Data-Driven Method

Overcooked-AI We suppose to apply traditional offline reinforcement learning technique to multi-agent algorithm. In this repository, we implemented be

Baek In-Chang 14 Sep 16, 2022
Source Code for DialogBERT: Discourse-Aware Response Generation via Learning to Recover and Rank Utterances (https://arxiv.org/pdf/2012.01775.pdf)

DialogBERT This is a PyTorch implementation of the DialogBERT model described in DialogBERT: Neural Response Generation via Hierarchical BERT with Dis

Xiaodong Gu 67 Jan 06, 2023