The code for our paper CrossFormer: A Versatile Vision Transformer Based on Cross-scale Attention.

Overview

CrossFormer

This repository is the code for our paper CrossFormer: A Versatile Vision Transformer Based on Cross-scale Attention.

Introduction

Existing vision transformers fail to build attention among objects/features of different scales (cross-scale attention), while such ability is very important to visual tasks. CrossFormer is a versatile vision transformer which solves this problem. Its core designs contain Cross-scale Embedding Layer (CEL), Long-Short Distance Attention (L/SDA), which work together to enable cross-scale attention.

CEL blends every input embedding with multiple-scale features. L/SDA split all embeddings into several groups, and the self-attention is only computed within each group (embeddings with the same color border belong to the same group.).

Further, we also propose a dynamic position bias (DPB) module, which makes the effective yet inflexible relative position bias apply to variable image size.

Now, experiments are done on four representative visual tasks, i.e., image classification, objection detection, and instance/semantic segmentation. Results show that CrossFormer outperforms existing vision transformers in these tasks, especially in dense prediction tasks (i.e., object detection and instance/semantic segmentation). We think it is because image classification only pays attention to one object and large-scale features, while dense prediction tasks rely more on cross-scale attention.

Prerequisites

  1. Libraries (Python3.6-based)
pip3 install numpy scipy Pillow pyyaml torch==1.7.0 torchvision==0.8.1 timm==0.3.2
  1. Dataset: ImageNet

  2. Requirements for detection/instance segmentation and semantic segmentation are listed here: detection/README.md or segmentation/README.md

Getting Started

Training

## There should be two directories under the path_to_imagenet: train and validation

## CrossFormer-T
python -u -m torch.distributed.launch --nproc_per_node 8 main.py --cfg configs/tiny_patch4_group7_224.yaml \
--batch-size 128 --data-path path_to_imagenet --output ./output

## CrossFormer-S
python -u -m torch.distributed.launch --nproc_per_node 8 main.py --cfg configs/small_patch4_group7_224.yaml \
--batch-size 128 --data-path path_to_imagenet --output ./output

## CrossFormer-B
python -u -m torch.distributed.launch --nproc_per_node 8 main.py --cfg configs/base_patch4_group7_224.yaml 
--batch-size 128 --data-path path_to_imagenet --output ./output

## CrossFormer-L
python -u -m torch.distributed.launch --nproc_per_node 8 main.py --cfg configs/large_patch4_group7_224.yaml \
--batch-size 128 --data-path path_to_imagenet --output ./output

Testing

## Take CrossFormer-T as an example
python -u -m torch.distributed.launch --nproc_per_node 1 main.py --cfg configs/tiny_patch4_group7_224.yaml \
--batch-size 128 --data-path path_to_imagenet --eval --resume path_to_crossformer-t.pth

Training scripts for objection detection: detection/README.md.

Training scripts for semantic segmentation: segmentation/README.md.

Results

Image Classification

Models trained on ImageNet-1K and evaluated on its validation set. The input image size is 224 x 224.

Architectures Params FLOPs Accuracy Models
ResNet-50 25.6M 4.1G 76.2% -
RegNetY-8G 39.0M 8.0G 81.7% -
CrossFormer-T 27.8M 2.9G 81.5% Google Drive/BaiduCloud, key: nkju
CrossFormer-S 30.7M 4.9G 82.5% Google Drive/BaiduCloud, key: fgqj
CrossFormer-B 52.0M 9.2G 83.4% Google Drive/BaiduCloud, key: 7md9
CrossFormer-L 92.0M 16.1G 84.0% TBD

More results compared with other vision transformers can be seen in the paper.

Objection Detection & Instance Segmentation

Models trained on COCO 2017. Backbones are initialized with weights pre-trained on ImageNet-1K.

Backbone Detection Head Learning Schedule Params FLOPs box AP mask AP
ResNet-101 RetinaNet 1x 56.7M 315.0G 38.5 -
CrossFormer-S RetinaNet 1x 40.8M 282.0G 44.4 -
CrossFormer-B RetinaNet 1x 62.1M 389.0G 46.2 -
ResNet-101 Mask-RCNN 1x 63.2M 336.0G 40.4 36.4
CrossFormer-S Mask-RCNN 1x 50.2M 301.0G 45.4 41.4
CrossFormer-B Mask-RCNN 1x 71.5M 407.9G 47.2 42.7

More results and pretrained models for objection detection: detection/README.md.

Semantic Segmentation

Models trained on ADE20K. Backbones are initialized with weights pre-trained on ImageNet-1K.

Backbone Segmentation Head Iterations Params FLOPs IOU MS IOU
CrossFormer-S FPN 80K 34.3M 209.8G 46.4 -
CrossFormer-B FPN 80K 55.6M 320.1G 48.0 -
CrossFormer-L FPN 80K 95.4M 482.7G 49.1 -
ResNet-101 UPerNet 160K 86.0M 1029.G 44.9 -
CrossFormer-S UPerNet 160K 62.3M 979.5G 47.6 48.4
CrossFormer-B UPerNet 160K 83.6M 1089.7G 49.7 50.6
CrossFormer-L UPerNet 160K 125.5M 1257.8G 50.4 51.4

MS IOU means IOU with multi-scale testing.

More results and pretrained models for semantic segmentation: segmentation/README.md.

Citing Us

@article{crossformer2021,
  title     = {CrossFormer: A Versatile Vision Transformer Based on Cross-scale Attention},
  author    = {Wenxiao Wang and Lu Yao and Long Chen and Deng Cai and Xiaofei He and Wei Liu},
  journal   = {CoRR},
  volume    = {abs/2108.00154},
  year      = {2021},
}

Acknowledgement

Part of the code of this repository refers to Swin Transformer.

Owner
cheerss
cheerss
Machine Learning Toolkit for Kubernetes

Kubeflow the cloud-native platform for machine learning operations - pipelines, training and deployment. Documentation Please refer to the official do

Kubeflow 12.1k Jan 03, 2023
Omniscient Video Super-Resolution

Omniscient Video Super-Resolution This is the official code of OVSR (Omniscient Video Super-Resolution, ICCV 2021). This work is based on PFNL. Datase

36 Oct 27, 2022
The source code of CVPR 2019 paper "Deep Exemplar-based Video Colorization".

Deep Exemplar-based Video Colorization (Pytorch Implementation) Paper | Pretrained Model | Youtube video 🔥 | Colab demo Deep Exemplar-based Video Col

Bo Zhang 253 Dec 27, 2022
(NeurIPS 2021) Pytorch implementation of paper "Re-ranking for image retrieval and transductive few-shot classification"

SSR (NeurIPS 2021) Pytorch implementation of paper "Re-ranking for image retrieval and transductivefew-shot classification" [Paper] [Project webpage]

xshen 29 Dec 06, 2022
McGill Physics Hackathon 2021: Reaction-Diffusion Models for the Generation of Biological Patterns

DiffuseAnimals: Reaction-Diffusion Models for the Generation of Biological Patterns Introduction Reaction-diffusion equations can be utilized in order

Austin Szuminsky 2 Mar 07, 2022
基于Paddlepaddle复现yolov5,支持PaddleDetection接口

PaddleDetection yolov5 https://github.com/Sharpiless/PaddleDetection-Yolov5 简介 PaddleDetection飞桨目标检测开发套件,旨在帮助开发者更快更好地完成检测模型的组建、训练、优化及部署等全开发流程。 PaddleD

36 Jan 07, 2023
Code and datasets for TPAMI 2021

SkeletonNet This repository constains the codes and ShapeNetV1-Surface-Skeleton,ShapNetV1-SkeletalVolume and 2d image datasets ShapeNetRendering. Plea

34 Aug 15, 2022
StarGANv2-VC: A Diverse, Unsupervised, Non-parallel Framework for Natural-Sounding Voice Conversion

StarGANv2-VC: A Diverse, Unsupervised, Non-parallel Framework for Natural-Sounding Voice Conversion Yinghao Aaron Li, Ali Zare, Nima Mesgarani We pres

Aaron (Yinghao) Li 282 Jan 01, 2023
Sequence lineage information extracted from RKI sequence data repo

Pango lineage information for German SARS-CoV-2 sequences This repository contains a join of the metadata and pango lineage tables of all German SARS-

Cornelius Roemer 24 Oct 26, 2022
A face dataset generator with out-of-focus blur detection and dynamic interval adjustment.

A face dataset generator with out-of-focus blur detection and dynamic interval adjustment.

Yutian Liu 2 Jan 29, 2022
A Loss Function for Generative Neural Networks Based on Watson’s Perceptual Model

This repository contains the similarity metrics designed and evaluated in the paper, and instructions and code to re-run the experiments. Implementation in the deep-learning framework PyTorch

Steffen 86 Dec 27, 2022
Official repository with code and data accompanying the NAACL 2021 paper "Hurdles to Progress in Long-form Question Answering" (https://arxiv.org/abs/2103.06332).

Hurdles to Progress in Long-form Question Answering This repository contains the official scripts and datasets accompanying our NAACL 2021 paper, "Hur

Kalpesh Krishna 41 Nov 08, 2022
Hierarchical Memory Matching Network for Video Object Segmentation (ICCV 2021)

Hierarchical Memory Matching Network for Video Object Segmentation Hongje Seong, Seoung Wug Oh, Joon-Young Lee, Seongwon Lee, Suhyeon Lee, Euntai Kim

Hongje Seong 72 Dec 14, 2022
Official and maintained implementation of the paper "OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data" [BMVC 2021].

OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data Christoph Reich, Tim Prangemeier, Özdemir Cetin & Heinz Koeppl | Pr

Christoph Reich 23 Sep 21, 2022
For encoding a text longer than 512 tokens, for example 800. Set max_pos to 800 during both preprocessing and training.

LongScientificFormer For encoding a text longer than 512 tokens, for example 800. Set max_pos to 800 during both preprocessing and training. Some code

Athar Sefid 6 Nov 02, 2022
Third party Pytorch implement of Image Processing Transformer (Pre-Trained Image Processing Transformer arXiv:2012.00364v2)

ImageProcessingTransformer Third party Pytorch implement of Image Processing Transformer (Pre-Trained Image Processing Transformer arXiv:2012.00364v2)

61 Jan 01, 2023
This is a re-implementation of TransGAN: Two Pure Transformers Can Make One Strong GAN (CVPR 2021) in PyTorch.

TransGAN: Two Transformers Can Make One Strong GAN [YouTube Video] Paper Authors: Yifan Jiang, Shiyu Chang, Zhangyang Wang CVPR 2021 This is re-implem

Ahmet Sarigun 79 Jan 05, 2023
LSTM built using Keras Python package to predict time series steps and sequences. Includes sin wave and stock market data

LSTM Neural Network for Time Series Prediction LSTM built using the Keras Python package to predict time series steps and sequences. Includes sine wav

Jakob Aungiers 4.1k Jan 02, 2023
Identify the emotion of multiple speakers in an Audio Segment

MevonAI - Speech Emotion Recognition Identify the emotion of multiple speakers in a Audio Segment Report Bug · Request Feature Try the Demo Here Table

Suyash More 110 Dec 03, 2022
Python code to fuse multiple RGB-D images into a TSDF voxel volume.

Volumetric TSDF Fusion of RGB-D Images in Python This is a lightweight python script that fuses multiple registered color and depth images into a proj

Andy Zeng 845 Jan 03, 2023