GeneGAN: Learning Object Transfiguration and Attribute Subspace from Unpaired Data

Overview

GeneGAN: Learning Object Transfiguration and Attribute Subspace from Unpaired Data

By Shuchang Zhou, Taihong Xiao, Yi Yang, Dieqiao Feng, Qinyao He, Weiran He

If you use this code for your research, please cite our paper:

@inproceedings{DBLP:conf/bmvc/ZhouXYFHH17,
  author    = {Shuchang Zhou and
               Taihong Xiao and
               Yi Yang and
               Dieqiao Feng and
               Qinyao He and
               Weiran He},
  title     = {GeneGAN: Learning Object Transfiguration and Attribute Subspace from Unpaired Data},
  booktitle = {Proceedings of the British Machine Vision Conference (BMVC)},
  year      = {2017},
  url       = {http://arxiv.org/abs/1705.04932},
  timestamp = {http://dblp.uni-trier.de/rec/bib/journals/corr/ZhouXYFHH17},
  bibsource = {dblp computer science bibliography, http://dblp.org}
}

We have two following papers, DNA-GAN and ELEGANT, that generalize the method into multiple attributes case. It is worth mentioning that ELEGANT can transfer multiple face attributes on high resolution images. Please pay attention to our new methods!

Introduction

This is the official source code for the paper GeneGAN: Learning Object Transfiguration and Attribute Subspace from Unpaired Data. All the experiments are initially done in our proprietary deep learning framework. For convenience, we reproduce the results using TensorFlow.

cross

GeneGAN is a deterministic conditional generative model that can learn to disentangle the object features from other factors in feature space from weak supervised 0/1 labeling of training data. It allows fine-grained control of generated images on one certain attribute in a continous way.

Requirement

  • Python 3.5
  • TensorFlow 1.0
  • Opencv 3.2

Training GeneGAN on celebA dataset

  1. Download celebA dataset and unzip it into datasets directory. There are various source providers for CelebA datasets. To ensure that the size of downloaded images is correct, please run identify datasets/celebA/data/000001.jpg. The size should be 409 x 687 if you are using the same dataset. Besides, please ensure that you have the following directory tree structure.
├── datasets
│   └── celebA
│       ├── data
│       ├── list_attr_celeba.txt
│       └── list_landmarks_celeba.txt
  1. Run python preprocess.py. It will take several miniutes to preprocess all face images. A new directory datasets/celebA/align_5p will be created.

  2. Run python train.py -a Bangs -g 0 to train GeneGAN on the attribute Bangs. You can train GeneGAN on other attributes as well. All available attribute names are listed in the list_attr_celeba.txt file.

  3. Run tensorboard --logdir='./' --port 6006 to watch your training process.

Testing

We provide three kinds of mode for test. Run python test.py -h for detailed help. The following example is running on our GeneGAN model trained on the attribute Bangs. Have fun!

1. Swapping of Attributes

You can easily add the bangs of one person to another person without bangs by running

python test.py -m swap -i datasets/celebA/align_5p/182929.jpg -t datasets/celebA/align_5p/022344.jpg
input target out1 out2
Swap Attribute

2. Linear Interpolation of Image Attributes

Besides, we can control to which extent the bangs style is added to your input image through linear interpolation of image attribute. Run the following code.

python test.py -m interpolation -i datasets/celebA/align_5p/182929.jpg -t datasets/celebA/align_5p/035460.jpg -n 5
interpolation target
Linear Interpolation

3. Matrix Interpolation in Attribute Subspace

We can do something cooler. Given four images with bangs attributes at hand, we can observe the gradual change process of our input images with a mixing of difference bangs style.

python test.py -m matrix -i datasets/celebA/align_5p/182929.jpg --targets datasets/celebA/align_5p/035460.jpg datasets/celebA/align_5p/035451.jpg datasets/celebA/align_5p/035463.jpg datasets/celebA/align_5p/035474.jpg -s 5 5
matrix
Matrix Interpolation

Chinese license plate recognition

AgentCLPR 简介 一个基于 ONNXRuntime、AgentOCR 和 License-Plate-Detector 项目开发的中国车牌检测识别系统。 车牌识别效果 支持多种车牌的检测和识别(其中单层车牌识别效果较好): 单层车牌: [[[[373, 282], [69, 284],

AgentMaker 26 Dec 25, 2022
PyTorch implementation of the supervised learning experiments from the paper Model-Agnostic Meta-Learning (MAML)

pytorch-maml This is a PyTorch implementation of the supervised learning experiments from the paper Model-Agnostic Meta-Learning (MAML): https://arxiv

Kate Rakelly 516 Jan 05, 2023
【Arxiv】Exploring Separable Attention for Multi-Contrast MR Image Super-Resolution

SANet Exploring Separable Attention for Multi-Contrast MR Image Super-Resolution Dependencies numpy==1.18.5 scikit_image==0.16.2 torchvision==0.8.1 to

36 Jan 05, 2023
Lipstick ain't enough: Beyond Color-Matching for In-the-Wild Makeup Transfer (CVPR 2021)

Table of Content Introduction Datasets Getting Started Requirements Usage Example Training & Evaluation CPM: Color-Pattern Makeup Transfer CPM is a ho

VinAI Research 248 Dec 13, 2022
A solution to ensure Crowd Management with Contactless and Safe systems.

CovidTrack A Solution to ensure Crowd Management with Contactless and Safe systems. ML Model Mask Detection Social Distancing Detection Analytics Page

Om Khare 1 Nov 10, 2021
Companion code for "Bayesian logistic regression for online recalibration and revision of risk prediction models with performance guarantees"

Companion code for "Bayesian logistic regression for online recalibration and revision of risk prediction models with performance guarantees" Installa

0 Oct 13, 2021
Mosaic of Object-centric Images as Scene-centric Images (MosaicOS) for long-tailed object detection and instance segmentation.

MosaicOS Mosaic of Object-centric Images as Scene-centric Images (MosaicOS) for long-tailed object detection and instance segmentation. Introduction M

Cheng Zhang 27 Oct 12, 2022
PyTorch Implementation of DSB for Score Based Generative Modeling. Experiments managed using Hydra.

Diffusion Schrödinger Bridge with Applications to Score-Based Generative Modeling This repository contains the implementation for the paper Diffusion

James Thornton 50 Jan 03, 2023
You Only Look Once for Panopitic Driving Perception

You Only 👀 Once for Panoptic 🚗 Perception You Only Look at Once for Panoptic driving Perception by Dong Wu, Manwen Liao, Weitian Zhang, Xinggang Wan

Hust Visual Learning Team 1.4k Jan 04, 2023
Official PyTorch code for Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021)

Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021) This repository is the official P

Jingyun Liang 159 Dec 30, 2022
The Official Implementation of Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning of 3D Pose [NIPS 2021].

Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning of 3D Pose Release Notes The offical PyTorch implementation of Neural View Sy

Angtian Wang 20 Oct 09, 2022
A Python library for common tasks on 3D point clouds

Point Cloud Utils (pcu) - A Python library for common tasks on 3D point clouds Point Cloud Utils (pcu) is a utility library providing the following fu

Francis Williams 622 Dec 27, 2022
Official Pytorch Implementation of 3DV2021 paper: SAFA: Structure Aware Face Animation.

SAFA: Structure Aware Face Animation (3DV2021) Official Pytorch Implementation of 3DV2021 paper: SAFA: Structure Aware Face Animation. Getting Started

QiulinW 122 Dec 23, 2022
All of the figures and notebooks for my deep learning book, for free!

"Deep Learning - A Visual Approach" by Andrew Glassner This is the official repo for my book from No Starch Press. Ordering the book My book is called

Andrew Glassner 227 Jan 04, 2023
A diff tool for language models

LMdiff Qualitative comparison of large language models. Demo & Paper: http://lmdiff.net LMdiff is a MIT-IBM Watson AI Lab collaboration between: Hendr

Hendrik Strobelt 27 Dec 29, 2022
This is the official implement of paper "ActionCLIP: A New Paradigm for Action Recognition"

This is an official pytorch implementation of ActionCLIP: A New Paradigm for Video Action Recognition [arXiv] Overview Content Prerequisites Data Prep

268 Jan 09, 2023
Neural network pruning for finding a sparse computational model for controlling a biological motor task.

MothPruning Scientific Overview Originally inspired by biological nervous systems, deep neural networks (DNNs) are powerful computational tools for mo

Olivia Thomas 0 Dec 14, 2022
[NeurIPS 2021] Galerkin Transformer: a linear attention without softmax

[NeurIPS 2021] Galerkin Transformer: linear attention without softmax Summary A non-numerical analyst oriented explanation on Toward Data Science abou

Shuhao Cao 159 Dec 20, 2022
MOpt-AFL provided by the paper "MOPT: Optimized Mutation Scheduling for Fuzzers"

MOpt-AFL 1. Description MOpt-AFL is a AFL-based fuzzer that utilizes a customized Particle Swarm Optimization (PSO) algorithm to find the optimal sele

172 Dec 18, 2022
Notepy is a full-featured Notepad Python app

Notepy A full featured python text-editor Notable features Autocompletion for parenthesis and quote Auto identation Syntax highlighting Compile and ru

Mirko Rovere 11 Sep 28, 2022