A toolset for creating Qualtrics-based IAT experiments

Overview

Qualtrics IAT Tool

A web app for generating the Implicit Association Test (IAT) running on Qualtrics

Online Web App

The app is hosted by Streamlit, a Python-based web framework. You can use the app here: Qualtrics IAT Tool.

Run Web App Offline

Alternatively, you can run the app offline. The general steps are:

  1. Download the latest version of the repository.
  2. Install Python and Streamlit.
  3. Run the web app in a Terminal with the command: streamlit run your_directory/qualtrics_iat/web_app.py

Citation:

Cui Y., Robinson, J.D., Kim, S.K., Kypriotakis G., Green C.E., Shete S.S., & Cinciripini P.M., An open source web app for creating and scoring Qualtrics-based implicit association test. Behavior Research Methods (submitted)

Key Functionalities

The web app has three key functionalities: IAT Generator, Qualtrics Tools, and IAT Data Scorer. Each functionality is clearly described on the web app regarding what parameters are expected and what they mean. If you have any questions, please feel free to leave a comment or send your inquiries to me.

IAT Generator

In this section, you can generate the Qualtrics survey template to run the IAT experiment. Typically, you need to consider specifying the following parameters. We'll use the classic flower-insect IAT as an example. As a side note, there are a few other IAT tasks (e.g., gender-career) in the app for your reference.

  • Positive Target Concept: Flower
  • Negative Target Concept: Insect
  • Positive Target Stimuli: Orchid, Tulip, Rose, Daffodil, Daisy, Lilac, Lily
  • Negative Target Stimuli: Wasp, Flea, Roach, Centipede, Moth, Bedbug, Gnat
  • Positive Attribute Concept: Pleasant
  • Negative Attribute Concept: Unpleasant
  • Positive Attribute Stimuli: Joy, Happy, Laughter, Love, Friend, Pleasure, Peace, Wonderful
  • Negative Attribute Stimuli: Evil, Agony, Awful, Nasty, Terrible, Horrible, Failure, War

Once you specify these parameters, you can generate a Qualtrics template file, from which you can create a Qualtrics survey that is ready to be administered. Please note that not all Qualtrics account types support creating surveys from a template. Alternatively, you can obtain the JavaScript code of running the IAT experiment and add the code to a Qualtrics question. If you do this, please make sure that you set the proper embedded data fields.

Qualtrics Tools

In this section, you can directly interact with the Qualtrics server by invoking its APIs. To use these APIs, you need to obtain the token in your account settings. Key functionalities include:

  • Upload Images to Qualtrics Graphic Library: You can upload images from your local computer to your Qualtrics Graphics Library. You need to specify the library ID # and the name of the folder to which the images will be uploaded. If the upload succeeds, the web app will return the URLs for these images. You can set these URLs as stimuli in the IAT if your experiment uses pictures.

  • Create Surveys: You can create surveys by uploading a QSF file or the JSON text. Please note that the QSF file uses JSON as its content. If you're not sure about the JSON content, you can inspect a template file.

  • Export Survey Responses: You can export a survey's responses for offline processing. You need to specify the library ID # and the export file format (e.g., csv).

  • Delete Images: You can delete images from your Qualtrics Graphics Library. You need to specify the library ID # and the IDs for the images that you want to delete.

  • Delete Survey: You can delete surveys from your Qualtrics Library. You need to specify the survey ID #.

IAT Data Scorer

In this section, you can score the IAT data from the exported survey response. Currently, there are two calculation algorithms supported: the conventional and the improved.

Citation for the algorithms: Greenwald et al. Understanding and Using the Implicit Association Test: I. An Improved Scoring Algorithm. Journal of Personality and Social Psychology 2003 (85)2:192-216

The Conventional Algorithm

  1. Use data from B4 & B7 (counter-balanced order will be taken care of in the calculation).
  2. Nonsystematic elimination of subjects for excessively slow responding and/or high error rates.
  3. Drop the first two trials of each block.
  4. Recode latencies outside 300/3,000 boundaries to the nearer boundary value.
  5. 5.Log-transform the resulting values.
  6. Average the resulting values for each of the two blocks.
  7. Compute the difference: B7 - B4.

The Improved Algorithm

  1. Use data from B3, B4, B6, & B7 (counter-balanced order will be taken care of in the calculation).
  2. Eliminate trials with latencies > 10,000 ms; Eliminate subjects for whom more than 10% of trials have latency less than 300 ms.
  3. Use all trials; Delete trials with latencies below 400 ms (alternative).
  4. Compute mean of correct latencies for each block. Compute SD of correct latencies for each block (alternative).
  5. Compute one pooled SD for all trials in B3 & B6, another for B4 & B7; Compute one pooled SD for correct trials in B3 & B6, another for B4 & B7 (alternative).
  6. Replace each error latency with block mean (computed in Step 5) + 600 ms; Replace each error latency with block mean + 2 x block SD of correct responses (alternative 1); Use latencies to correct responses when correction to error responses is required (alternative 2).
  7. Average the resulting values for each of the four blocks.
  8. Compute two differences: B6 - B3 and B7 - B4.
  9. Divide each difference by its associated pooled-trials SD.
  10. Average the two quotients.

Questions?

If you have any questions or would like to contribute to this project, please send me an email: [email protected].

License

MIT License

Code to run experiments in SLOE: A Faster Method for Statistical Inference in High-Dimensional Logistic Regression.

Code to run experiments in SLOE: A Faster Method for Statistical Inference in High-Dimensional Logistic Regression. Not an official Google product. Me

Google Research 27 Dec 12, 2022
Checking fibonacci - Generating the Fibonacci sequence is a classic recursive problem

Fibonaaci Series Generating the Fibonacci sequence is a classic recursive proble

Moureen Caroline O 1 Feb 15, 2022
Style transfer between images was performed using the VGG19 model

Style transfer between images was performed using the VGG19 model. The necessary codes, libraries and all other information of this project are available below

Onur yılmaz 2 May 09, 2022
[ICML 2020] DrRepair: Learning to Repair Programs from Error Messages

DrRepair: Learning to Repair Programs from Error Messages This repo provides the source code & data of our paper: Graph-based, Self-Supervised Program

Michihiro Yasunaga 155 Jan 08, 2023
Rafael Project- Classifying rockets to different types using data science algorithms.

Rocket-Classify Rafael Project- Classifying rockets to different types using data science algorithms. In this project we received data base with data

Hadassah Engel 5 Sep 18, 2021
Annotated, understandable, and visually interpretable PyTorch implementations of: VAE, BIRVAE, NSGAN, MMGAN, WGAN, WGANGP, LSGAN, DRAGAN, BEGAN, RaGAN, InfoGAN, fGAN, FisherGAN

Overview PyTorch 0.4.1 | Python 3.6.5 Annotated implementations with comparative introductions for minimax, non-saturating, wasserstein, wasserstein g

Shayne O'Brien 471 Dec 16, 2022
Mercer Gaussian Process (MGP) and Fourier Gaussian Process (FGP) Regression

Mercer Gaussian Process (MGP) and Fourier Gaussian Process (FGP) Regression We provide the code used in our paper "How Good are Low-Rank Approximation

Aristeidis (Ares) Panos 0 Dec 13, 2021
code and models for "Laplacian Pyramid Reconstruction and Refinement for Semantic Segmentation"

Laplacian Pyramid Reconstruction and Refinement for Semantic Segmentation This repository contains code and models for the method described in: Golnaz

55 Jun 18, 2022
Facial Image Inpainting with Semantic Control

Facial Image Inpainting with Semantic Control In this repo, we provide a model for the controllable facial image inpainting task. This model enables u

Ren Yurui 8 Nov 22, 2021
A Nim frontend for pytorch, aiming to be mostly auto-generated and internally using ATen.

Master Release Pytorch - Py + Nim A Nim frontend for pytorch, aiming to be mostly auto-generated and internally using ATen. Because Nim compiles to C+

Giovanni Petrantoni 425 Dec 22, 2022
【Arxiv】Exploring Separable Attention for Multi-Contrast MR Image Super-Resolution

SANet Exploring Separable Attention for Multi-Contrast MR Image Super-Resolution Dependencies numpy==1.18.5 scikit_image==0.16.2 torchvision==0.8.1 to

36 Jan 05, 2023
zeus is a Python implementation of the Ensemble Slice Sampling method.

zeus is a Python implementation of the Ensemble Slice Sampling method. Fast & Robust Bayesian Inference, Efficient Markov Chain Monte Carlo (MCMC), Bl

Minas Karamanis 197 Dec 04, 2022
PyTorch implementation for 3D human pose estimation

Towards 3D Human Pose Estimation in the Wild: a Weakly-supervised Approach This repository is the PyTorch implementation for the network presented in:

Xingyi Zhou 579 Dec 22, 2022
This project demonstrates the use of neural networks and computer vision to create a classifier that interprets the Brazilian Sign Language.

LIBRAS-Image-Classifier This project demonstrates the use of neural networks and computer vision to create a classifier that interprets the Brazilian

Aryclenio Xavier Barros 26 Oct 14, 2022
Implementation of character based convolutional neural network

Character Based CNN This repo contains a PyTorch implementation of a character-level convolutional neural network for text classification. The model a

Ahmed BESBES 248 Nov 21, 2022
A diff tool for language models

LMdiff Qualitative comparison of large language models. Demo & Paper: http://lmdiff.net LMdiff is a MIT-IBM Watson AI Lab collaboration between: Hendr

Hendrik Strobelt 27 Dec 29, 2022
A graph neural network (GNN) model to predict protein-protein interactions (PPI) with no sample features

A graph neural network (GNN) model to predict protein-protein interactions (PPI) with no sample features

2 Jul 25, 2022
Semi-supervised Domain Adaptation via Minimax Entropy

Semi-supervised Domain Adaptation via Minimax Entropy (ICCV 2019) Install pip install -r requirements.txt The code is written for Pytorch 0.4.0, but s

Vision and Learning Group 243 Jan 09, 2023
CoReD: Generalizing Fake Media Detection with Continual Representation using Distillation (ACMMM'21 Oral Paper)

CoReD: Generalizing Fake Media Detection with Continual Representation using Distillation (ACMMM'21 Oral Paper) (Accepted for oral presentation at ACM

Minha Kim 1 Nov 12, 2021
TensorFlow CNN for fast style transfer

Fast Style Transfer in TensorFlow Add styles from famous paintings to any photo in a fraction of a second! It takes 100ms on a 2015 Titan X to style t

1 Dec 14, 2021