A toolset for creating Qualtrics-based IAT experiments

Overview

Qualtrics IAT Tool

A web app for generating the Implicit Association Test (IAT) running on Qualtrics

Online Web App

The app is hosted by Streamlit, a Python-based web framework. You can use the app here: Qualtrics IAT Tool.

Run Web App Offline

Alternatively, you can run the app offline. The general steps are:

  1. Download the latest version of the repository.
  2. Install Python and Streamlit.
  3. Run the web app in a Terminal with the command: streamlit run your_directory/qualtrics_iat/web_app.py

Citation:

Cui Y., Robinson, J.D., Kim, S.K., Kypriotakis G., Green C.E., Shete S.S., & Cinciripini P.M., An open source web app for creating and scoring Qualtrics-based implicit association test. Behavior Research Methods (submitted)

Key Functionalities

The web app has three key functionalities: IAT Generator, Qualtrics Tools, and IAT Data Scorer. Each functionality is clearly described on the web app regarding what parameters are expected and what they mean. If you have any questions, please feel free to leave a comment or send your inquiries to me.

IAT Generator

In this section, you can generate the Qualtrics survey template to run the IAT experiment. Typically, you need to consider specifying the following parameters. We'll use the classic flower-insect IAT as an example. As a side note, there are a few other IAT tasks (e.g., gender-career) in the app for your reference.

  • Positive Target Concept: Flower
  • Negative Target Concept: Insect
  • Positive Target Stimuli: Orchid, Tulip, Rose, Daffodil, Daisy, Lilac, Lily
  • Negative Target Stimuli: Wasp, Flea, Roach, Centipede, Moth, Bedbug, Gnat
  • Positive Attribute Concept: Pleasant
  • Negative Attribute Concept: Unpleasant
  • Positive Attribute Stimuli: Joy, Happy, Laughter, Love, Friend, Pleasure, Peace, Wonderful
  • Negative Attribute Stimuli: Evil, Agony, Awful, Nasty, Terrible, Horrible, Failure, War

Once you specify these parameters, you can generate a Qualtrics template file, from which you can create a Qualtrics survey that is ready to be administered. Please note that not all Qualtrics account types support creating surveys from a template. Alternatively, you can obtain the JavaScript code of running the IAT experiment and add the code to a Qualtrics question. If you do this, please make sure that you set the proper embedded data fields.

Qualtrics Tools

In this section, you can directly interact with the Qualtrics server by invoking its APIs. To use these APIs, you need to obtain the token in your account settings. Key functionalities include:

  • Upload Images to Qualtrics Graphic Library: You can upload images from your local computer to your Qualtrics Graphics Library. You need to specify the library ID # and the name of the folder to which the images will be uploaded. If the upload succeeds, the web app will return the URLs for these images. You can set these URLs as stimuli in the IAT if your experiment uses pictures.

  • Create Surveys: You can create surveys by uploading a QSF file or the JSON text. Please note that the QSF file uses JSON as its content. If you're not sure about the JSON content, you can inspect a template file.

  • Export Survey Responses: You can export a survey's responses for offline processing. You need to specify the library ID # and the export file format (e.g., csv).

  • Delete Images: You can delete images from your Qualtrics Graphics Library. You need to specify the library ID # and the IDs for the images that you want to delete.

  • Delete Survey: You can delete surveys from your Qualtrics Library. You need to specify the survey ID #.

IAT Data Scorer

In this section, you can score the IAT data from the exported survey response. Currently, there are two calculation algorithms supported: the conventional and the improved.

Citation for the algorithms: Greenwald et al. Understanding and Using the Implicit Association Test: I. An Improved Scoring Algorithm. Journal of Personality and Social Psychology 2003 (85)2:192-216

The Conventional Algorithm

  1. Use data from B4 & B7 (counter-balanced order will be taken care of in the calculation).
  2. Nonsystematic elimination of subjects for excessively slow responding and/or high error rates.
  3. Drop the first two trials of each block.
  4. Recode latencies outside 300/3,000 boundaries to the nearer boundary value.
  5. 5.Log-transform the resulting values.
  6. Average the resulting values for each of the two blocks.
  7. Compute the difference: B7 - B4.

The Improved Algorithm

  1. Use data from B3, B4, B6, & B7 (counter-balanced order will be taken care of in the calculation).
  2. Eliminate trials with latencies > 10,000 ms; Eliminate subjects for whom more than 10% of trials have latency less than 300 ms.
  3. Use all trials; Delete trials with latencies below 400 ms (alternative).
  4. Compute mean of correct latencies for each block. Compute SD of correct latencies for each block (alternative).
  5. Compute one pooled SD for all trials in B3 & B6, another for B4 & B7; Compute one pooled SD for correct trials in B3 & B6, another for B4 & B7 (alternative).
  6. Replace each error latency with block mean (computed in Step 5) + 600 ms; Replace each error latency with block mean + 2 x block SD of correct responses (alternative 1); Use latencies to correct responses when correction to error responses is required (alternative 2).
  7. Average the resulting values for each of the four blocks.
  8. Compute two differences: B6 - B3 and B7 - B4.
  9. Divide each difference by its associated pooled-trials SD.
  10. Average the two quotients.

Questions?

If you have any questions or would like to contribute to this project, please send me an email: [email protected].

License

MIT License

ViDT: An Efficient and Effective Fully Transformer-based Object Detector

ViDT: An Efficient and Effective Fully Transformer-based Object Detector by Hwanjun Song1, Deqing Sun2, Sanghyuk Chun1, Varun Jampani2, Dongyoon Han1,

NAVER AI 262 Dec 27, 2022
Official PyTorch code for Mutual Affine Network for Spatially Variant Kernel Estimation in Blind Image Super-Resolution (MANet, ICCV2021)

Mutual Affine Network for Spatially Variant Kernel Estimation in Blind Image Super-Resolution (MANet, ICCV2021) This repository is the official PyTorc

Jingyun Liang 139 Dec 29, 2022
Official repository of the paper 'Essentials for Class Incremental Learning'

Essentials for Class Incremental Learning Official repository of the paper 'Essentials for Class Incremental Learning' This Pytorch repository contain

33 Nov 27, 2022
Demonstration of the Model Training as a CI/CD System in Vertex AI

Model Training as a CI/CD System This project demonstrates the machine model training as a CI/CD system in GCP platform. You will see more detailed wo

Chansung Park 19 Dec 28, 2022
Computer Vision application in the web

Computer Vision application in the web Preview Usage Clone this repo git clone https://github.com/amineHY/WebApp-Computer-Vision-streamlit.git cd Web

Amine Hadj-Youcef. PhD 35 Dec 06, 2022
Self-Supervised Multi-Frame Monocular Scene Flow (CVPR 2021)

Self-Supervised Multi-Frame Monocular Scene Flow 3D visualization of estimated depth and scene flow (overlayed with input image) from temporally conse

Visual Inference Lab @TU Darmstadt 85 Dec 22, 2022
Pytorch implementation of "Forward Thinking: Building and Training Neural Networks One Layer at a Time"

forward-thinking-pytorch Pytorch implementation of Forward Thinking: Building and Training Neural Networks One Layer at a Time Requirements Python 2.7

Kim Heecheol 65 Oct 06, 2022
PClean: A Domain-Specific Probabilistic Programming Language for Bayesian Data Cleaning

PClean: A Domain-Specific Probabilistic Programming Language for Bayesian Data Cleaning Warning: This is a rapidly evolving research prototype.

MIT Probabilistic Computing Project 190 Dec 27, 2022
CSE-519---Project - Job Title Analysis (Project for CSE 519 - Data Science Fundamentals)

A Multifaceted Approach to Job Title Analysis CSE 519 - Data Science Fundamentals Project Description Project consists of three parts: Salary Predicti

Jimit Dholakia 1 Jan 04, 2022
Code for "The Intrinsic Dimension of Images and Its Impact on Learning" - ICLR 2021 Spotlight

dimensions Estimating the instrinsic dimensionality of image datasets Code for: The Intrinsic Dimensionaity of Images and Its Impact On Learning - Phi

Phil Pope 41 Dec 10, 2022
Implementation of "RaScaNet: Learning Tiny Models by Raster-Scanning Image" from CVPR 2021.

RaScaNet: Learning Tiny Models by Raster-Scanning Images Deploying deep convolutional neural networks on ultra-low power systems is challenging, becau

SAIT (Samsung Advanced Institute of Technology) 5 Dec 26, 2022
🌳 A Python-inspired implementation of the Optimum-Path Forest classifier.

OPFython: A Python-Inspired Optimum-Path Forest Classifier Welcome to OPFython. Note that this implementation relies purely on the standard LibOPF. Th

Gustavo Rosa 30 Jan 04, 2023
Christmas face app for Decathlon xmas coding party!

Christmas Face Application Use this library to create the perfect picture for your christmas cards! Done by Hasib Zunair, Guillaume Brassard and Samue

Hasib Zunair 4 Dec 20, 2021
Learning Continuous Image Representation with Local Implicit Image Function

LIIF This repository contains the official implementation for LIIF introduced in the following paper: Learning Continuous Image Representation with Lo

Yinbo Chen 1k Dec 25, 2022
Gym for multi-agent reinforcement learning

PettingZoo is a Python library for conducting research in multi-agent reinforcement learning, akin to a multi-agent version of Gym. Our website, with

Farama Foundation 1.6k Jan 09, 2023
Using pretrained language models for biomedical knowledge graph completion.

LMs for biomedical KG completion This repository contains code to run the experiments described in: Scientific Language Models for Biomedical Knowledg

Rahul Nadkarni 41 Nov 30, 2022
[CVPR 2021] Anycost GANs for Interactive Image Synthesis and Editing

Anycost GAN video | paper | website Anycost GANs for Interactive Image Synthesis and Editing Ji Lin, Richard Zhang, Frieder Ganz, Song Han, Jun-Yan Zh

MIT HAN Lab 726 Dec 28, 2022
ConvMAE: Masked Convolution Meets Masked Autoencoders

ConvMAE ConvMAE: Masked Convolution Meets Masked Autoencoders Peng Gao1, Teli Ma1, Hongsheng Li2, Jifeng Dai3, Yu Qiao1, 1 Shanghai AI Laboratory, 2 M

Alpha VL Team of Shanghai AI Lab 345 Jan 08, 2023
Synthesizing Long-Term 3D Human Motion and Interaction in 3D in CVPR2021

Long-term-Motion-in-3D-Scenes This is an implementation of the CVPR'21 paper "Synthesizing Long-Term 3D Human Motion and Interaction in 3D". Please ch

Jiashun Wang 76 Dec 13, 2022
FADNet++: Real-Time and Accurate Disparity Estimation with Configurable Networks

FADNet++: Real-Time and Accurate Disparity Estimation with Configurable Networks

HKBU High Performance Machine Learning Lab 6 Nov 18, 2022