Pairwise Learning for Neural Link Prediction for OGB (PLNLP-OGB)

Related tags

Deep LearningPLNLP
Overview

Pairwise Learning for Neural Link Prediction for OGB (PLNLP-OGB)

This repository provides evaluation codes of PLNLP for OGB link property prediction task. The idea of PLNLP is described in the following article:

Pairwise Learning for Neural Link Prediction (https://arxiv.org/pdf/2112.02936.pdf)

The performance of PLNLP on OGB link prediction tasks is listed as the following tables:

ogbl-ddi ([email protected]) ogbl-collab ([email protected]) ogbl-citation2 (MRR)
Validation 82.42 ± 2.53 100.00 ± 0.00 84.90 ± 0.31
Test 90.88 ± 3.13 70.59 ± 0.29 84.92 ± 0.29

Only with basic graph neural layers (GraphSAGE or GCN), PLNLP achieves top-1 performance on both ogbl-collab and ogbl-ddi, and top-2 on ogbl-citation2 in current OGB Link Property Prediction Leader Board until Dec 22, 2021 (https://ogb.stanford.edu/docs/leader_linkprop/), which demonstrates the effectiveness of the proposed framework. We believe that the performance will be further improved with link prediction specific neural architecure, such as proposed ones in our previous work [2][3]. We leave this part in the future work.

Environment

The code is implemented with PyTorch and PyTorch Geometric. Requirments:
 1. python=3.6
 2. pytorch=1.7.1
 3. ogb=1.3.2
 4. pyg=2.0.1

Reproduction of performance on OGBL

ogbl-ddi:

python main.py --data_name=ogbl-ddi --emb_hidden_channels=512 --gnn_hidden_channels=512 --mlp_hidden_channels=512 --num_neg=3 --dropout=0.3 

ogbl-collab:

Validation set is allowed to be used for training in this dataset. Meanwhile, following the trick of HOP-REC, we only use training edges after year 2010 with validation edges, and train the model on this subgraph. The performance of "PLNLP (val as input)" on the leader board can be reproduced with following command:

python main.py --data_name=ogbl-collab --predictor=DOT --use_valedges_as_input=True --year=2010 --train_on_subgraph=True --epochs=800 --eval_last_best=True --dropout=0.3

Furthermore, we sample high-order pairs with random walk and employ them as a kind of data augmentation. This augmentation method improves the performance significantly. To reproduce the performance of "PLNLP (random walk aug.)" on the leader board, you can use the following command:

python main.py --data_name=ogbl-collab  --predictor=DOT --use_valedges_as_input=True --year=2010 --train_on_subgraph=True --epochs=800 --eval_last_best=True --dropout=0.3 --gnn_num_layers=1 --grad_clip_norm=1 --use_lr_decay=True --random_walk_augment=True --walk_length=10 --loss_func=WeightedHingeAUC

ogbl-citation2:

python main.py --data_name=ogbl-citation2 --use_node_feat=True --encoder=GCN --emb_hidden_channels=50 --mlp_hidden_channels=200 --gnn_hidden_channels=200 --grad_clip_norm=1 --eval_steps=1 --num_neg=3 --eval_metric=mrr --epochs=100 --neg_sampler=local 

Reference

This work is based on our previous work as listed below:

[1] Zhitao Wang, Chengyao Chen, Wenjie Li. "Predictive Network Representation Learning for Link Prediction" (SIGIR'17) [Paper]

[2] Zhitao Wang, Yu Lei and Wenjie Li. "Neighborhood Interaction Attention Network for Link Prediction" (CIKM'19) [Paper]

[3] Zhitao Wang, Yu Lei and Wenjie Li. "Neighborhood Attention Networks with Adversarial Learning for Link Prediction " (TNNLS) [Paper]

Owner
Zhitao WANG
Researcher at WeChat Pay, Tencent
Zhitao WANG
Code for "Unsupervised State Representation Learning in Atari"

Unsupervised State Representation Learning in Atari Ankesh Anand*, Evan Racah*, Sherjil Ozair*, Yoshua Bengio, Marc-Alexandre Côté, R Devon Hjelm This

Mila 217 Jan 03, 2023
Multi-Scale Vision Longformer: A New Vision Transformer for High-Resolution Image Encoding

Vision Longformer This project provides the source code for the vision longformer paper. Multi-Scale Vision Longformer: A New Vision Transformer for H

Microsoft 209 Dec 30, 2022
cl;asification problem using classification models in supervised learning

wine-quality-predition---classification cl;asification problem using classification models in supervised learning Wine Quality Prediction Analysis - C

Vineeth Reddy Gangula 1 Jan 18, 2022
Keras implementations of Generative Adversarial Networks.

This repository has gone stale as I unfortunately do not have the time to maintain it anymore. If you would like to continue the development of it as

Erik Linder-Norén 8.9k Jan 04, 2023
Microsoft Cognitive Toolkit (CNTK), an open source deep-learning toolkit

CNTK Chat Windows build status Linux build status The Microsoft Cognitive Toolkit (https://cntk.ai) is a unified deep learning toolkit that describes

Microsoft 17.3k Dec 29, 2022
Crossover Learning for Fast Online Video Instance Segmentation (ICCV 2021)

TL;DR: CrossVIS (Crossover Learning for Fast Online Video Instance Segmentation) proposes a novel crossover learning paradigm to fully leverage rich c

Hust Visual Learning Team 79 Nov 25, 2022
A Comprehensive Study on Learning-Based PE Malware Family Classification Methods

A Comprehensive Study on Learning-Based PE Malware Family Classification Methods Datasets Because of copyright issues, both the MalwareBazaar dataset

8 Oct 21, 2022
Pytorch reimplementation of PSM-Net: "Pyramid Stereo Matching Network"

This is a Pytorch Lightning version PSMNet which is based on JiaRenChang/PSMNet. use python main.py to start training. PSM-Net Pytorch reimplementatio

XIAOTIAN LIU 1 Nov 25, 2021
[ICCV 2021] A Simple Baseline for Semi-supervised Semantic Segmentation with Strong Data Augmentation

[ICCV 2021] A Simple Baseline for Semi-supervised Semantic Segmentation with Strong Data Augmentation

CodingMan 45 Dec 12, 2022
A tensorflow implementation of Fully Convolutional Networks For Semantic Segmentation

##A tensorflow implementation of Fully Convolutional Networks For Semantic Segmentation. #USAGE To run the trained classifier on some images: python w

Alex Seewald 13 Nov 17, 2022
The PyTorch improved version of TPAMI 2017 paper: Face Alignment in Full Pose Range: A 3D Total Solution.

Face Alignment in Full Pose Range: A 3D Total Solution By Jianzhu Guo. [Updates] 2020.8.30: The pre-trained model and code of ECCV-20 are made public

Jianzhu Guo 3.4k Jan 02, 2023
Official repository of the paper "GPR1200: A Benchmark for General-PurposeContent-Based Image Retrieval"

GPR1200 Dataset GPR1200: A Benchmark for General-Purpose Content-Based Image Retrieval (ArXiv) Konstantin Schall, Kai Uwe Barthel, Nico Hezel, Klaus J

Visual Computing Group 16 Nov 21, 2022
Advanced Deep Learning with TensorFlow 2 and Keras (Updated for 2nd Edition)

Advanced Deep Learning with TensorFlow 2 and Keras (Updated for 2nd Edition)

Packt 1.5k Jan 03, 2023
[NeurIPS'21] Shape As Points: A Differentiable Poisson Solver

Shape As Points (SAP) Paper | Project Page | Short Video (6 min) | Long Video (12 min) This repository contains the implementation of the paper: Shape

394 Dec 30, 2022
Probabilistic Gradient Boosting Machines

PGBM Probabilistic Gradient Boosting Machines (PGBM) is a probabilistic gradient boosting framework in Python based on PyTorch/Numba, developed by Air

Olivier Sprangers 112 Dec 28, 2022
MMFlow is an open source optical flow toolbox based on PyTorch

Documentation: https://mmflow.readthedocs.io/ Introduction English | 简体中文 MMFlow is an open source optical flow toolbox based on PyTorch. It is a part

OpenMMLab 688 Jan 06, 2023
Face Mesh is a face geometry solution that estimates 468 3D face landmarks in real-time even on mobile devices

Face-Mesh Face Mesh is a face geometry solution that estimates 468 3D face landmarks in real-time even on mobile devices. It employs machine learning

Farnam Javadi 9 Dec 21, 2022
Code for ECIR'20 paper Diagnosing BERT with Retrieval Heuristics

Bert Axioms This is the repository with the code for the Paper Diagnosing BERT with Retrieval Heuristics Required Data In order to run this code, you

Arthur Câmara 5 Jan 21, 2022
This repository provides the official code for GeNER (an automated dataset Generation framework for NER).

GeNER This repository provides the official code for GeNER (an automated dataset Generation framework for NER). Overview of GeNER GeNER allows you to

DMIS Laboratory - Korea University 50 Nov 30, 2022
TensorFlow 101: Introduction to Deep Learning for Python Within TensorFlow

TensorFlow 101: Introduction to Deep Learning I have worked all my life in Machine Learning, and I've never seen one algorithm knock over its benchmar

Sefik Ilkin Serengil 896 Jan 04, 2023