Pairwise Learning for Neural Link Prediction for OGB (PLNLP-OGB)

Related tags

Deep LearningPLNLP
Overview

Pairwise Learning for Neural Link Prediction for OGB (PLNLP-OGB)

This repository provides evaluation codes of PLNLP for OGB link property prediction task. The idea of PLNLP is described in the following article:

Pairwise Learning for Neural Link Prediction (https://arxiv.org/pdf/2112.02936.pdf)

The performance of PLNLP on OGB link prediction tasks is listed as the following tables:

ogbl-ddi ([email protected]) ogbl-collab ([email protected]) ogbl-citation2 (MRR)
Validation 82.42 ± 2.53 100.00 ± 0.00 84.90 ± 0.31
Test 90.88 ± 3.13 70.59 ± 0.29 84.92 ± 0.29

Only with basic graph neural layers (GraphSAGE or GCN), PLNLP achieves top-1 performance on both ogbl-collab and ogbl-ddi, and top-2 on ogbl-citation2 in current OGB Link Property Prediction Leader Board until Dec 22, 2021 (https://ogb.stanford.edu/docs/leader_linkprop/), which demonstrates the effectiveness of the proposed framework. We believe that the performance will be further improved with link prediction specific neural architecure, such as proposed ones in our previous work [2][3]. We leave this part in the future work.

Environment

The code is implemented with PyTorch and PyTorch Geometric. Requirments:
 1. python=3.6
 2. pytorch=1.7.1
 3. ogb=1.3.2
 4. pyg=2.0.1

Reproduction of performance on OGBL

ogbl-ddi:

python main.py --data_name=ogbl-ddi --emb_hidden_channels=512 --gnn_hidden_channels=512 --mlp_hidden_channels=512 --num_neg=3 --dropout=0.3 

ogbl-collab:

Validation set is allowed to be used for training in this dataset. Meanwhile, following the trick of HOP-REC, we only use training edges after year 2010 with validation edges, and train the model on this subgraph. The performance of "PLNLP (val as input)" on the leader board can be reproduced with following command:

python main.py --data_name=ogbl-collab --predictor=DOT --use_valedges_as_input=True --year=2010 --train_on_subgraph=True --epochs=800 --eval_last_best=True --dropout=0.3

Furthermore, we sample high-order pairs with random walk and employ them as a kind of data augmentation. This augmentation method improves the performance significantly. To reproduce the performance of "PLNLP (random walk aug.)" on the leader board, you can use the following command:

python main.py --data_name=ogbl-collab  --predictor=DOT --use_valedges_as_input=True --year=2010 --train_on_subgraph=True --epochs=800 --eval_last_best=True --dropout=0.3 --gnn_num_layers=1 --grad_clip_norm=1 --use_lr_decay=True --random_walk_augment=True --walk_length=10 --loss_func=WeightedHingeAUC

ogbl-citation2:

python main.py --data_name=ogbl-citation2 --use_node_feat=True --encoder=GCN --emb_hidden_channels=50 --mlp_hidden_channels=200 --gnn_hidden_channels=200 --grad_clip_norm=1 --eval_steps=1 --num_neg=3 --eval_metric=mrr --epochs=100 --neg_sampler=local 

Reference

This work is based on our previous work as listed below:

[1] Zhitao Wang, Chengyao Chen, Wenjie Li. "Predictive Network Representation Learning for Link Prediction" (SIGIR'17) [Paper]

[2] Zhitao Wang, Yu Lei and Wenjie Li. "Neighborhood Interaction Attention Network for Link Prediction" (CIKM'19) [Paper]

[3] Zhitao Wang, Yu Lei and Wenjie Li. "Neighborhood Attention Networks with Adversarial Learning for Link Prediction " (TNNLS) [Paper]

Owner
Zhitao WANG
Researcher at WeChat Pay, Tencent
Zhitao WANG
Code for training and evaluation of the model from "Language Generation with Recurrent Generative Adversarial Networks without Pre-training"

Language Generation with Recurrent Generative Adversarial Networks without Pre-training Code for training and evaluation of the model from "Language G

Amir Bar 253 Sep 14, 2022
MonoRCNN is a monocular 3D object detection method for automonous driving

MonoRCNN MonoRCNN is a monocular 3D object detection method for automonous driving, published at ICCV 2021. This project is an implementation of MonoR

87 Dec 27, 2022
Funnels: Exact maximum likelihood with dimensionality reduction.

Funnels This repository contains the code needed to reproduce the experiments from the paper: Funnels: Exact maximum likelihood with dimensionality re

2 Apr 21, 2022
CVPR 2020 oral paper: Overcoming Classifier Imbalance for Long-tail Object Detection with Balanced Group Softmax.

Overcoming Classifier Imbalance for Long-tail Object Detection with Balanced Group Softmax ⚠️ Latest: Current repo is a complete version. But we delet

FishYuLi 341 Dec 23, 2022
Liver segmentation using MONAI and pytorch

Machine Learning use case in the field of Healthcare. In this project MONAI and pytorch frameworks are used for 3D Liver segmentation.

Abhishek Gajbhiye 2 May 30, 2022
For IBM Quantum Challenge 2021 (May 20 - 26)

IBM Quantum Challenge 2021 Introduction Commemorating the 40-year anniversary of the Physics of Computation conference, and 5-year anniversary of IBM

Qiskit Community 140 Jan 01, 2023
This repository contains PyTorch models for SpecTr (Spectral Transformer).

SpecTr: Spectral Transformer for Hyperspectral Pathology Image Segmentation This repository contains PyTorch models for SpecTr (Spectral Transformer).

Boxiang Yun 45 Dec 13, 2022
CSPML (crystal structure prediction with machine learning-based element substitution)

CSPML (crystal structure prediction with machine learning-based element substitution) CSPML is a unique methodology for the crystal structure predicti

8 Dec 20, 2022
LibFewShot: A Comprehensive Library for Few-shot Learning.

LibFewShot Make few-shot learning easy. Supported Methods Meta MAML(ICML'17) ANIL(ICLR'20) R2D2(ICLR'19) Versa(NeurIPS'18) LEO(ICLR'19) MTL(CVPR'19) M

<a href=[email protected]&L"> 603 Jan 05, 2023
Evaluating different engineering tricks that make RL work

Reinforcement Learning Tricks, Index This repository contains the code for the paper "Distilling Reinforcement Learning Tricks for Video Games". Short

Anssi 15 Dec 26, 2022
Match SafeGraph POIs with Data collected through a cultural resource survey in Washington DC.

Match SafeGraph POI data with Cultural Resource Places in Washington DC Match SafeGraph POIs with Data collected through a cultural resource survey in

Changjie Chen 1 Jan 05, 2022
Official implementation of NLOS-OT: Passive Non-Line-of-Sight Imaging Using Optimal Transport (IEEE TIP, accepted)

NLOS-OT Official implementation of NLOS-OT: Passive Non-Line-of-Sight Imaging Using Optimal Transport (IEEE TIP, accepted) Description In this reposit

Ruixu Geng(耿瑞旭) 16 Dec 16, 2022
An open software package to develop BCI based brain and cognitive computing technology for recognizing user's intention using deep learning

An open software package to develop BCI based brain and cognitive computing technology for recognizing user's intention using deep learning

deepbci 272 Jan 08, 2023
Automatically download the cwru data set, and then divide it into training data set and test data set

Automatically download the cwru data set, and then divide it into training data set and test data set.自动下载cwru数据集,然后分训练数据集和测试数据集

6 Jun 27, 2022
Global Rhythm Style Transfer Without Text Transcriptions

Global Prosody Style Transfer Without Text Transcriptions This repository provides a PyTorch implementation of AutoPST, which enables unsupervised glo

Kaizhi Qian 193 Dec 30, 2022
PyTorch implementation of 'Gen-LaneNet: a generalized and scalable approach for 3D lane detection'

(pytorch) Gen-LaneNet: a generalized and scalable approach for 3D lane detection Introduction This is a pytorch implementation of Gen-LaneNet, which p

Yuliang Guo 233 Jan 06, 2023
Noether Networks: meta-learning useful conserved quantities

Noether Networks: meta-learning useful conserved quantities This repository contains the code necessary to reproduce experiments from "Noether Network

Dylan Doblar 33 Nov 23, 2022
clustering moroccan stocks time series data using k-means with dtw (dynamic time warping)

Moroccan Stocks Clustering Context Hey! we don't always have to forecast time series am I right ? We use k-means to cluster about 70 moroccan stock pr

Ayman Lafaz 7 Oct 18, 2022
GANSketchingJittor - Implementation of Sketch Your Own GAN in Jittor

GANSketching in Jittor Implementation of (Sketch Your Own GAN) in Jittor(计图). Or

Bernard Tan 10 Jul 02, 2022
Film review classification

Film review classification Решение задачи классификации отзывов на фильмы на положительные и отрицательные с помощью рекуррентных нейронных сетей 1. З

Nikita Dukin 3 Jan 21, 2022