Unofficial TensorFlow implementation of Protein Interface Prediction using Graph Convolutional Networks.

Overview

[TensorFlow] Protein Interface Prediction using Graph Convolutional Networks

Unofficial TensorFlow implementation of Protein Interface Prediction using Graph Convolutional Networks [1].

Usage

$ unzip dataset.zip
$ python run.py

Dataset

Number of samples

Set Complex Positive Negative
Training 140 12866 (9.1 %) 128660 (90.9 %)
Validation 35 3138 (0.2 %) 31380 (99.8 %)
Test 55 4871 (0.1 %) 4953446 (99.9 %)

Sample view for Ligand and Receptor respectively.

Feature description

Graph
│
├── Vertex: 70 features
│    ├── Windowed Position Specific Scoring Matrix: 20
│    ├── Relative Accessible Surface Area: 1
│    ├── Residue Depth: 2
│    ├── Protrusion Index: 6
│    ├── Hydrophobicity: 1
│    └── Half Sphere Amino Acid Composition: 40
└── Edge: 2 features
     ├── Average Atomic Distance: 1
     └── CCαO Angle: 1

Three equations for each neural network in this repository. Each equation is provided as net00_pipgcn_navg.py, net01_pipgcn_neavg.py, and net02_pipgcn_odepn.py

Result

  • Refer that the results shown below are temporary results. (AUROC: 0.81421)
  • The model tuning process is not finished completely.

Loss graph.

Results of the test process. The first figure (upper side) shows the negative interaction score between ligand and receptor. The lower side figures show a histogram of negative interaction score of negative labeled and positive labeled sample.

Requirements

Contribution

  • YeongHyeon Park : PIPGCN implementation (including neural network, data management)
  • Myung Jin Kim and Yeong Beom Kim : review (double-check)

Reference

[1] Fout, Alex M. Protein interface prediction using graph convolutional networks. Diss. Colorado State University, 2017.
[2] Supplementary Data for NIPS Publication: Protein Interface Prediction using Graph Convolutional Networks. https://zenodo.org/record/1127774#.WkLewGGnGcY

Owner
YeongHyeon Park
YeongHyeon Park
[ICCV'21] Neural Radiance Flow for 4D View Synthesis and Video Processing

NeRFlow [ICCV'21] Neural Radiance Flow for 4D View Synthesis and Video Processing Datasets The pouring dataset used for experiments can be download he

44 Dec 20, 2022
Open-CyKG: An Open Cyber Threat Intelligence Knowledge Graph

Open-CyKG: An Open Cyber Threat Intelligence Knowledge Graph Model Description Open-CyKG is a framework that is constructed using an attenti

Injy Sarhan 34 Jan 05, 2023
Deep Q-Learning Network in pytorch (not actively maintained)

pytoch-dqn This project is pytorch implementation of Human-level control through deep reinforcement learning and I also plan to implement the followin

Hung-Tu Chen 342 Jan 01, 2023
working repo for my xumx-sliCQ submissions to the ISMIR 2021 MDX

Music Demixing Challenge - xumx-sliCQ This repository is the GitHub mirror of my working submission repository for the AICrowd ISMIR 2021 Music Demixi

4 Aug 25, 2021
Picasso: A CUDA-based Library for Deep Learning over 3D Meshes

The Picasso Library is intended for complex real-world applications with large-scale surfaces, while it also performs impressively on the small-scale applications over synthetic shape manifolds. We h

97 Dec 01, 2022
Akshat Surolia 2 May 11, 2022
The repository contains reproducible PyTorch source code of our paper Generative Modeling with Optimal Transport Maps, ICLR 2022.

Generative Modeling with Optimal Transport Maps The repository contains reproducible PyTorch source code of our paper Generative Modeling with Optimal

Litu Rout 30 Dec 22, 2022
PED: DETR for Crowd Pedestrian Detection

PED: DETR for Crowd Pedestrian Detection Code for PED: DETR For (Crowd) Pedestrian Detection Paper PED: DETR for Crowd Pedestrian Detection Installati

36 Sep 13, 2022
Practical Blind Denoising via Swin-Conv-UNet and Data Synthesis

Practical Blind Denoising via Swin-Conv-UNet and Data Synthesis [Paper] [Online Demo] The following results are obtained by our SCUNet with purely syn

Kai Zhang 312 Jan 07, 2023
Repository for the AugmentedPCA Python package.

Overview This Python package provides implementations of Augmented Principal Component Analysis (AugmentedPCA) - a family of linear factor models that

Billy Carson 6 Dec 07, 2022
A simple, unofficial implementation of MAE using pytorch-lightning

Masked Autoencoders in PyTorch A simple, unofficial implementation of MAE (Masked Autoencoders are Scalable Vision Learners) using pytorch-lightning.

Connor Anderson 20 Dec 03, 2022
Code of the paper "Deep Human Dynamics Prior" in ACM MM 2021.

Code of the paper "Deep Human Dynamics Prior" in ACM MM 2021. Figure 1: In the process of motion capture (mocap), some joints or even the whole human

Shinny cui 3 Oct 31, 2022
Lightweight Cuda Renderer with Python Wrapper.

pyRender Lightweight Cuda Renderer with Python Wrapper. Compile Change compile.sh line 5 to the glm library include path. This library can be download

Jingwei Huang 53 Dec 02, 2022
Tutorial materials for Part of NSU Intro to Deep Learning with PyTorch.

Intro to Deep Learning Materials are part of North South University (NSU) Intro to Deep Learning with PyTorch workshop series. (Slides) Related materi

Hasib Zunair 9 Jun 08, 2022
LLVIP: A Visible-infrared Paired Dataset for Low-light Vision

LLVIP: A Visible-infrared Paired Dataset for Low-light Vision Project | Arxiv | Abstract It is very challenging for various visual tasks such as image

CVSM Group - email: <a href=[email protected]"> 377 Jan 07, 2023
HomoInterpGAN - Homomorphic Latent Space Interpolation for Unpaired Image-to-image Translation

HomoInterpGAN Homomorphic Latent Space Interpolation for Unpaired Image-to-image Translation (CVPR 2019, oral) Installation The implementation is base

Ying-Cong Chen 99 Nov 15, 2022
3D2Unet: 3D Deformable Unet for Low-Light Video Enhancement (PRCV2021)

3DDUNET This is the code for 3D2Unet: 3D Deformable Unet for Low-Light Video Enhancement (PRCV2021) Conference Paper Link Dataset We use SMOID dataset

1 Jan 07, 2022
TRIQ implementation

TRIQ Implementation TF-Keras implementation of TRIQ as described in Transformer for Image Quality Assessment. Installation Clone this repository. Inst

Junyong You 115 Dec 30, 2022
Posterior predictive distributions quantify uncertainties ignored by point estimates.

Posterior predictive distributions quantify uncertainties ignored by point estimates.

DeepMind 177 Dec 06, 2022
Code for the paper Open Sesame: Getting Inside BERT's Linguistic Knowledge.

Open Sesame This repository contains the code for the paper Open Sesame: Getting Inside BERT's Linguistic Knowledge. Credits We built the project on t

9 Jul 24, 2022