A Python package for time series augmentation

Overview

tsaug

Build Status Documentation Status Coverage Status PyPI Downloads Code style: black

tsaug is a Python package for time series augmentation. It offers a set of augmentation methods for time series, as well as a simple API to connect multiple augmenters into a pipeline.

See https://tsaug.readthedocs.io complete documentation.

Installation

Prerequisites: Python 3.5 or later.

It is recommended to install the most recent stable release of tsaug from PyPI.

pip install tsaug

Alternatively, you could install from source code. This will give you the latest, but unstable, version of tsaug.

git clone https://github.com/arundo/tsaug.git
cd tsaug/
git checkout develop
pip install ./

Examples

A first-time user may start with two examples:

Examples of every individual augmenter can be found here

For full references of implemented augmentation methods, please refer to References.

Contributing

Pull requests are welcome. For major changes, please open an issue first to discuss what you would like to change.

Please make sure to update tests as appropriate.

Please see Contributing for more details.

License

tsaug is licensed under the Apache License 2.0. See the LICENSE file for details.

Comments
  • How to cite this repo?

    How to cite this repo?

    Basically the title. I used this awesome repo and I would like to cite this repo in my paper. How to do it. If you could provide a bibtex entry that will be great

    question 
    opened by kowshikthopalli 2
  • Default _Augmentor arguments will raise an error

    Default _Augmentor arguments will raise an error

    While working on #1 I found that the default args for initializing an _Augmentor object could lead to the code trying to call None when expecting a function.

    See: https://github.com/arundo/tsaug/blob/ebf1955664991fe51f038a5cc8506f1bfc849d91/src/tsaug/augmentor.py#L5 https://github.com/arundo/tsaug/blob/ebf1955664991fe51f038a5cc8506f1bfc849d91/src/tsaug/augmentor.py#L6

    and

    https://github.com/arundo/tsaug/blob/ebf1955664991fe51f038a5cc8506f1bfc849d91/src/tsaug/augmentor.py#L47

    I know that it's not intended to be initialized without an augmenter function, function, but I was wondering if you want to explicitly prevent an error here.

    Or is something else supposed to be happening?

    bug 
    opened by roycoding 1
  • can't find the deepad python package

    can't find the deepad python package

    In the quickstart notebook https://github.com/arundo/tsaug/blob/master/docs/quickstart.ipynb from deepad.visualization import plot where can you find the deepad package to install?

    opened by xsqian 1
  • Missing function calls in documentation

    Missing function calls in documentation

    Hi!

    I noticed that documentation is actually missing few important notes.

    For instance, first example contains such snippet:

    >>> import numpy as np
    >>> X = np.load("./X.npy")
    >>> Y = np.load("./Y.npy")
    >>> from tsaug.visualization import plot
    >>> plot(X, Y)
    

    and shows a chart which suggests that it is immediately rendered after calling plot function.

    In configurations I've seen and worked on, plot function does not render any chart immediately. Instead it returns Tuple[matplotlib.figure.Figure, matplotlib.axes._axes.Axes]. This means that we need to take first element of returned tuple and call .show() on it, so this example should rather be:

    >>> import numpy as np
    >>> X = np.load("./X.npy")
    >>> Y = np.load("./Y.npy")
    >>> from tsaug.visualization import plot
    >>> figure, _ = plot(X, Y)
    >>> figure.show()
    

    I can create a push request with such corrections if you're open for contribution

    opened by 15bubbles 0
  • Static random augmentation across multiple time series

    Static random augmentation across multiple time series

    Hello,

    I have a use case where I apply temporal augmentation with the same random anchor across multiple time series within a segmented object. I.e., I want certain augmentations to vary across objects, but remain constant within objects.

    In TimeWarp, e.g., I've added an optional keyword argument (static_rand):

        def __init__(
             self,
             n_speed_change: int = 3,
             max_speed_ratio: Union[float, Tuple[float, float], List[float]] = 3.0,
             repeats: int = 1,
             prob: float = 1.0,
             seed: Optional[int] = _default_seed,
             static_rand: Optional[bool] = False
         ):
    

    which is used by:

             if self.static_rand:                                                                                                                      
                 anchor_values = rand.uniform(low=0.0, high=1.0, size=self.n_speed_change + 1)
                 anchor_values = np.tile(anchor_values, (N, 1))
             else:
                 anchor_values = rand.uniform(
                     low=0.0, high=1.0, size=(N, self.n_speed_change + 1)
                 )
    

    Thus, instead of having N time series with different random anchor_values, I generate N time series with the same anchor value.

    I use this approach with TimeWarp and Drift. Would this be of any interest as a PR, or does it sound too specific?

    Thanks for the nice library.

    opened by jgrss 0
  • _Augmenter should be exposed properly as tsaug.Augmenter

    _Augmenter should be exposed properly as tsaug.Augmenter

    Might be related to https://github.com/arundo/tsaug/issues/1

    In the current state of the package, the _Augmenter class is an internal class that should not be used outside of the package itself... but it's also the base class for all usable classes from tsaug. This makes it very weird to type "generic" functions outside of tsaug, e.g.

    # this should not appear in a normal Python code
    from tsaug._augmenters.base import _Augmenter
    
    def apply_transformation(aug: _Augmenter):
        ...
    

    The _Augmenter class should be exposed as tsaug.Augmenter so that it can be used for proper typing outside of the tsaug package.

    help wanted 
    opened by Holt59 0
  • Equivalence in transformation names

    Equivalence in transformation names

    Hello

    I'm very interested to use and apply Tsaug library in my personal project.

    I have read the paper "Data Augmentation ofWearable Sensor Data for Parkinson’s Disease Monitoring using Convolutional Neural Networks" and I'm quite confused about the name of the transformations.

    What are the equivalent in TSAUG library for the transformations Jittering, Scaling, rotation, permutation, MagWarp mentioned in this paper?

    Also, I have read the blog "https://www.arundo.com/arundo_tech_blog/tsaug-an-open-source-python-package-for-time-series-augmentation", and I didn´t find the equivalent for RandomMagnify, RandomJitter, etc.

    Could you help me with these doubts.

    Best regards

    Oscar

    question 
    opened by ogreyesp 1
  • ValueError: The numbers of series in X and Y are different.

    ValueError: The numbers of series in X and Y are different.

    The shape of X is (54, 337) and the shape of y is (54,). But I am getting error. I am using the following code

    from tsaug import TimeWarp, Crop, Quantize, Drift, Reverse
    my_augmenter = (
        TimeWarp() * 5  # random time warping 5 times in parallel
        + Crop(size=300)  # random crop subsequences with length 300
        + Quantize(n_levels=[10, 20, 30])  # random quantize to 10-, 20-, or 30- level sets
        + Drift(max_drift=(0.1, 0.5)) @ 0.8  # with 80% probability, random drift the signal up to 10% - 50%
        + Reverse() @ 0.5  # with 50% probability, reverse the sequence
    )
    data, labels = my_augmenter.augment(data, labels)
    
    question 
    opened by talhaanwarch 3
  • How to augment multi_variate time series data?

    How to augment multi_variate time series data?

    I noticed that while augmenting multi-variate time series data, augmented data is concatenated on 0 axes, instead of being added to a new axis ie third axis. Let suppose data shape is (18,1000), after augmentation it turns to be (72,1000), but i believe it should be (4,18,1000). simply reshaping data.reshape(4,18,1000) resolve the problem or not?

    question 
    opened by talhaanwarch 2
Releases(v0.2.1)
An elaborate and exhaustive paper list for Named Entity Recognition (NER)

Named-Entity-Recognition-NER-Papers by Pengfei Liu, Jinlan Fu and other contributors. An elaborate and exhaustive paper list for Named Entity Recognit

Pengfei Liu 388 Dec 18, 2022
Python based Advanced AI Assistant

Knick is a virtual artificial intelligence project, fully developed in python. The objective of this project is to develop a virtual assistant that can handle our minor, intermediate as well as heavy

19 Nov 15, 2022
A Pytorch Implementation of [Source data‐free domain adaptation of object detector through domain

A Pytorch Implementation of Source data‐free domain adaptation of object detector through domain‐specific perturbation Please follow Faster R-CNN and

1 Dec 25, 2021
This is the repository of our article published on MDPI Entropy "Feature Selection for Recommender Systems with Quantum Computing".

Collaborative-driven Quantum Feature Selection This repository was developed by Riccardo Nembrini, PhD student at Politecnico di Milano. See the websi

Quantum Computing Lab @ Politecnico di Milano 10 Apr 21, 2022
Code for the paper "Improved Techniques for Training GANs"

Status: Archive (code is provided as-is, no updates expected) improved-gan code for the paper "Improved Techniques for Training GANs" MNIST, SVHN, CIF

OpenAI 2.2k Jan 01, 2023
Image to Image translation, image generataton, few shot learning

Semi-supervised Learning for Few-shot Image-to-Image Translation [paper] Abstract: In the last few years, unpaired image-to-image translation has witn

yaxingwang 49 Nov 18, 2022
Code for ACM MM 2020 paper "NOH-NMS: Improving Pedestrian Detection by Nearby Objects Hallucination"

NOH-NMS: Improving Pedestrian Detection by Nearby Objects Hallucination The offical implementation for the "NOH-NMS: Improving Pedestrian Detection by

Tencent YouTu Research 64 Nov 11, 2022
Pseudo-mask Matters in Weakly-supervised Semantic Segmentation

Pseudo-mask Matters in Weakly-supervised Semantic Segmentation By Yi Li, Zhanghui Kuang, Liyang Liu, Yimin Chen, Wayne Zhang SenseTime, Tsinghua Unive

33 Oct 14, 2022
PyTorch implementation of hand mesh reconstruction described in CMR and MobRecon.

Hand Mesh Reconstruction Introduction This repo is the PyTorch implementation of hand mesh reconstruction described in CMR and MobRecon. Update 2021-1

Xingyu Chen 236 Dec 29, 2022
Practical tutorials and labs for TensorFlow used by Nvidia, FFN, CNN, RNN, Kaggle, AE

TensorFlow Tutorial - used by Nvidia Learn TensorFlow from scratch by examples and visualizations with interactive jupyter notebooks. Learn to compete

Alexander R Johansen 1.9k Dec 19, 2022
MonoRec: Semi-Supervised Dense Reconstruction in Dynamic Environments from a Single Moving Camera

MonoRec: Semi-Supervised Dense Reconstruction in Dynamic Environments from a Single Moving Camera

Felix Wimbauer 494 Jan 06, 2023
Inference pipeline for our participation in the FeTA challenge 2021.

feta-inference Inference pipeline for our participation in the FeTA challenge 2021. Team name: TRABIT Installation Download the two folders in https:/

Lucas Fidon 2 Apr 13, 2022
PrimitiveNet: Primitive Instance Segmentation with Local Primitive Embedding under Adversarial Metric (ICCV 2021)

PrimitiveNet Source code for the paper: Jingwei Huang, Yanfeng Zhang, Mingwei Sun. [PrimitiveNet: Primitive Instance Segmentation with Local Primitive

Jingwei Huang 47 Dec 06, 2022
This is the solution for 2nd rank in Kaggle competition: Feedback Prize - Evaluating Student Writing.

Feedback Prize - Evaluating Student Writing This is the solution for 2nd rank in Kaggle competition: Feedback Prize - Evaluating Student Writing. The

Udbhav Bamba 41 Dec 14, 2022
Official tensorflow implementation for CVPR2020 paper “Learning to Cartoonize Using White-box Cartoon Representations”

Tensorflow implementation for CVPR2020 paper “Learning to Cartoonize Using White-box Cartoon Representations”.

3.7k Dec 31, 2022
Multiple style transfer via variational autoencoder

ST-VAE Multiple style transfer via variational autoencoder By Zhi-Song Liu, Vicky Kalogeiton and Marie-Paule Cani This repo only provides simple testi

13 Oct 29, 2022
Chinese Mandarin tts text-to-speech 中文 (普通话) 语音 合成 , by fastspeech 2 , implemented in pytorch, using waveglow as vocoder,

Chinese mandarin text to speech based on Fastspeech2 and Unet This is a modification and adpation of fastspeech2 to mandrin(普通话). Many modifications t

291 Jan 02, 2023
Codebase for Attentive Neural Hawkes Process (A-NHP) and Attentive Neural Datalog Through Time (A-NDTT)

Introduction Codebase for the paper Transformer Embeddings of Irregularly Spaced Events and Their Participants. This codebase contains two packages: a

Alan Yang 28 Dec 12, 2022
Code of the paper "Shaping Visual Representations with Attributes for Few-Shot Learning (ASL)".

Shaping Visual Representations with Attributes for Few-Shot Learning This code implements the Shaping Visual Representations with Attributes for Few-S

chx_nju 9 Sep 01, 2022
ReLoss - Official implementation for paper "Relational Surrogate Loss Learning" ICLR 2022

Relational Surrogate Loss Learning (ReLoss) Official implementation for paper "R

Tao Huang 31 Nov 22, 2022