An efficient toolkit for Face Stylization based on the paper "AgileGAN: Stylizing Portraits by Inversion-Consistent Transfer Learning"

Overview

MMGEN-FaceStylor

English | 简体中文

Introduction

This repo is an efficient toolkit for Face Stylization based on the paper "AgileGAN: Stylizing Portraits by Inversion-Consistent Transfer Learning". We note that since the training code of AgileGAN is not released yet, this repo merely adopts the pipeline from AgileGAN and combines other helpful practices in this literature.

This project is based on MMCV and MMGEN, star and fork is welcomed 🤗 !

Results from FaceStylor trained by MMGEN

Requirements

  • CUDA 10.0 / CUDA 10.1
  • Python 3
  • PyTorch >= 1.6.0
  • MMCV-Full >= 1.3.15
  • MMGeneration >= 0.3.0

Setup

Step-1: Create an Environment

First, we should build a conda virtual environment and activate it.

conda create -n facestylor python=3.7 -y
conda activate facestylor

Suppose you have installed CUDA 10.1, you need to install the prebuilt PyTorch with CUDA 10.1.

conda install pytorch=1.6.0 cudatoolkit=10.1 torchvision -c pytorch
pip install requirements.txt

Step-2: Install MMCV and MMGEN

We can run the following command to install MMCV.

pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/cu101/torch1.6.0/index.html

Of course, you can also refer to the MMCV Docs to install it.

Next, we should install MMGEN containing the basic generative models that will be used in this project.

# Clone the MMGeneration repository.
git clone https://github.com/open-mmlab/mmgeneration.git
cd mmgeneration
# Install build requirements and then install MMGeneration.
pip install -r requirements.txt
pip install -v -e .  # or "python setup.py develop"
cd ..

Step-3: Clone repo and prepare the data and weights

Now, we need to clone this repo first.

git clone https://github.com/open-mmlab/MMGEN-FaceStylor.git

For convenience, we suggest that you make these folders under MMGEN-FaceStylor.

cd MMGEN-FaceStylor
mkdir data
mkdir work_dirs
mkdir work_dirs/experiments
mkdir work_dirs/pre-trained

Then, you can put or create the soft-link for your data under data folder, and store your experiments under work_dirs/experiments.

For testing and training, you need to download some necessary data provided by AgileGAN and put them under data folder. Or just run this:

wget --no-check-certificate 'https://docs.google.com/uc?export=download&id=1AavRxpZJYeCrAOghgtthYqVB06y9QJd3' -O data/shape_predictor_68_face_landmarks.dat

We also provide some pre-trained weights.

Pre-trained Weights
FFHQ-1024 StyleGAN2
FFHQ-256 StyleGAN2
IR-SE50 Model
Encoder for FFHQ-1024 StyleGAN2
Encoder for FFHQ-256 StyleGAN2
MetFace-Oil 1024 StyleGAN2
MetFace-Sketch 1024 StyleGAN2
Toonify 1024 StyleGAN2
Cartoon 256
Bitmoji 256
Comic 256
More Styles on the Way!

Play with MMGEN-FaceStylor

If you have followed the aforementioned steps, we can start to investigate FaceStylor!

Quick Try

To quickly try our project, please run the command below

python demo/quick_try.py demo/src.png --style toonify

Then, you can check the result in work_dirs/demos/agile_result.png.

  • If you want to play with your own photos, you can replace demo/src.png with your photo.
  • If you want to switch to another style, change toonify with other styles. Now, supported styles include toonify, oil, sketch, bitmoji, cartoon, comic.

Inversion

The inversion task will adopt a source image as input and return the most similar image that can be generated by the generator model.

For inversion, you can directly use agilegan_demo like this

python demo/agilegan_demo.py SOURCE_PATH CONFIG [--ckpt CKPT] [--device DEVICE] [--save-path SAVE_PATH]

Here, you should set SOURCE_PATH to your image path, CONFIG to the config file path, and CKPT to checkpoint path.

Take Celebahq-Encoder as an example, you need to download the weights to work_dirs/pre-trained/agile_encoder_celebahq1024x1024_lr_1e-4_150k.pth, put your test image under data run

python demo/agilegan_demo.py demo/src.png configs/agilegan/agile_encoder_celebahq1024x1024_lr_1e-4_150k.py --ckpt work_dirs/pre-trained/agile_encoder_celebahq_lr_1e-4_150k.pth

You will find the result work_dirs/demos/agile_result.png.

Stylization

Since the encoder and decoder of stylization can be trained from different configs, you're supposed to set their ckpts' path in config file. Take Metface-oil as an example, you can see the first two lines in config file.

encoder_ckpt_path = xxx
stylegan_weights = xxx

You should keep your actual weights path in line with your configs. Then run the same command without specifying CKPT.

python demo/agilegan_demo.py SOURCE_PATH CONFIG [--device DEVICE] [--save-path SAVE_PATH]

Train

Here I will tell you how to fine-tune with your own datasets. With only 100-200 images and less than one hour, you can train your own StyleGAN2. The only thing you need to do is to copy an agile_transfer config, like this one. Then modify the imgs_root with your actual data root, choose one of the two commands below to train your own model.

# For distributed training
bash tools/dist_train.sh ${CONFIG_FILE} ${GPUS_NUMBER} \
    --work-dir ./work_dirs/experiments/experiments_name \
    [optional arguments]
# For slurm training
bash tools/slurm_train.sh ${PARTITION} ${JOB_NAME} ${CONFIG} ${WORK_DIR} \
    [optional arguments]

Training Details

In this part, I will explain some training details, including ADA setting, layer freeze, and losses.

ADA Setting

To use ADA in your discriminator, you can use ADAStyleGAN2Discriminator as your discriminator, and adjust ADAAug setting as follows:

model = dict(
    discriminator=dict(
                 type='ADAStyleGAN2Discriminator',
                 data_aug=dict(type='ADAAug',
                 aug_pipeline=aug_kwargs, # This and below arguments can be set by yourself.
                 update_interval=4,
                 augment_initial_p=0.,
                 ada_target=0.6,
                 ada_kimg=500,
                 use_slow_aug=False)))

Layer Freeze Setting

FreezeD can be used for small data fine-tuning.

FreezeG can be used for pseudo translation.

model = dict(
  freezeD=5, # set to -1 if not need
  freezeG=4 # set to -1 if not need
  )

Losses Setting

In AgileGAN, to preserve the recognizable identity of the generated image, they introduce a similarity loss at the perceptual level. You can adjust the lpips_lambda as follows:

model = dict(lpips_lambda=0.8)

Generally speaking, the larger lpips_lambda is, the better the recognizable identity can be kept.

Datasets Link

To make it easier for you to train your own models, here are some links to publicly available datasets.

Dataset Links
MetFaces
AFHQ
Toonify
photo2cartoon
selfie2anime
face2comics v2
High-Resolution Anime Face
Bitmoji

Applications

We also provide LayerSwap and DNI apps for the trade-off between the structure of the original image and the stylization degree. To this end, you can adjust some parameters to get your desired result.

LayerSwap

When Layer Swapping is applied, the generated images have a higher similarity to the source image than AgileGAN's results.

From Left to Right: Input, Layer-Swap with L = 4, 3, 2, xxx Output

Run this command line to perform layer swapping:

python apps/layerSwap.py source_path modelA modelB \
      [--swap-layer SWAP_LAYER] [--device DEVICE] [--save-path SAVE_PATH]

Here, modelA is set to an PSPEncoderDecoder(config starts with agile_encoder) with FFHQ-StyleGAN2 as the decoder, modelB is set to an PSPEncoderDecoder(config starts with agile_encoder) with desired style generator as the decoder. Generally, the deeper you set swap-layer, the better structure of the original image will be kept.

We also provide a blending script to create and save the mixed weights.

python modelA modelB [--swap-layer SWAP_LAYER] [--show-input SHOW_INPUT] [--device DEVICE] [--save-path SAVE_PATH]

Here, modelA is the base model, where only the deep layers of its decoder will be replaced with modelB's counterpart.

DNI

Deep Network Interpolation between L4 and AgileGAN output

For more precise stylization control, you can try DNI with following commands:

python apps/dni.py source_path modelA modelB [--intervals INTERVALS] [--device DEVICE] [--save-folder SAVE_FOLDER]

Here, modelA and modelB are supposed to be PSPEncoderDecoder(configs start with agile_encoder) with decoders of different stylization degrees. INTERVALS is supposed to be the interpolation numbers.

You can also try applications in MMGEN, like interpolation and SeFA.

Interpolation


Indeed, we have provided an application script to users. You can use apps/interpolate_sample.py with the following commands for unconditional models’ interpolation:

python apps/interpolate_sample.py \
    ${CONFIG_FILE} \
    ${CHECKPOINT} \
    [--show-mode ${SHOW_MODE}] \
    [--endpoint ${ENDPOINT}] \
    [--interval ${INTERVAL}] \
    [--space ${SPACE}] \
    [--samples-path ${SAMPLES_PATH}] \
    [--batch-size ${BATCH_SIZE}] \

For more details, you can read related Docs.

Galary

Toonify





Oil





Cartoon





Comic





Bitmoji





Notions and TODOs

  • For encoder, I experimented with vae-encoder but found no significant improvement for inversion. I follow the "encoding into z plus space" way as the author does. I will release the vae-encoder version later, but I only offer a vanilla encoder this time.
  • For generator, I released vanilla stylegan2-generator, and attribute-aware generator will be released in next version.
  • For training settings, the parameters have slight difference from the paper. And I also tried ADA, freezeD and other methods not mentioned in paper.
  • More styles will be available in the next version.
  • More applications will be available in the next version.
  • We are also considering a web-side application.
  • Further code clean jobs.

Acknowledgments

Codes reference:

Display photos from: https://unsplash.com/t/people

Web demo powered by: https://gradio.app/

License

This project is released under the Apache 2.0 license. Some implementation in MMGEN-FaceStylor are with other licenses instead of Apache2.0. Please refer to LICENSES.md for the careful check, if you are using our code for commercial matters.

Owner
OpenMMLab
OpenMMLab
A Research-oriented Federated Learning Library and Benchmark Platform for Graph Neural Networks. Accepted to ICLR'2021 - DPML and MLSys'21 - GNNSys workshops.

FedGraphNN: A Federated Learning System and Benchmark for Graph Neural Networks A Research-oriented Federated Learning Library and Benchmark Platform

FedML-AI 175 Dec 01, 2022
Simple Dynamic Batching Inference

Simple Dynamic Batching Inference 解决了什么问题? 众所周知,Batch对于GPU上深度学习模型的运行效率影响很大。。。 是在Inference时。搜索、推荐等场景自带比较大的batch,问题不大。但更多场景面临的往往是稀碎的请求(比如图片服务里一次一张图)。 如果

116 Jan 01, 2023
An SMPC companion library for Syft

SyMPC A library that extends PySyft with SMPC support SyMPC /ˈsɪmpəθi/ is a library which extends PySyft ≥0.3 with SMPC support. It allows computing o

Arturo Marquez Flores 0 Oct 13, 2021
Labels4Free: Unsupervised Segmentation using StyleGAN

Labels4Free: Unsupervised Segmentation using StyleGAN ICCV 2021 Figure: Some segmentation masks predicted by Labels4Free Framework on real and synthet

70 Dec 23, 2022
TensorFlow GNN is a library to build Graph Neural Networks on the TensorFlow platform.

TensorFlow GNN This is an early (alpha) release to get community feedback. It's under active development and we may break API compatibility in the fut

889 Dec 30, 2022
Discriminative Condition-Aware PLDA

DCA-PLDA This repository implements the Discriminative Condition-Aware Backend described in the paper: L. Ferrer, M. McLaren, and N. Brümmer, "A Speak

Luciana Ferrer 31 Aug 05, 2022
Dynamical movement primitives (DMPs), probabilistic movement primitives (ProMPs), spatially coupled bimanual DMPs.

Movement Primitives Movement primitives are a common group of policy representations in robotics. There are many different types and variations. This

DFKI Robotics Innovation Center 63 Jan 06, 2023
Pytorch implement of 'Unmixing based PAN guided fusion network for hyperspectral imagery'

Pgnet There's a improved version compared with the publication in Tgrs with the modification in the deduction of the PDIN block: https://arxiv.org/abs

5 Jul 01, 2022
A Vision Transformer approach that uses concatenated query and reference images to learn the relationship between query and reference images directly.

A Vision Transformer approach that uses concatenated query and reference images to learn the relationship between query and reference images directly.

24 Dec 13, 2022
Code for the paper Progressive Pose Attention for Person Image Generation in CVPR19 (Oral).

Pose-Transfer Code for the paper Progressive Pose Attention for Person Image Generation in CVPR19(Oral). The paper is available here. Video generation

Tengteng Huang 679 Jan 04, 2023
A heterogeneous entity-augmented academic language model based on Open Academic Graph (OAG)

Library | Paper | Slack We released two versions of OAG-BERT in CogDL package. OAG-BERT is a heterogeneous entity-augmented academic language model wh

THUDM 58 Dec 17, 2022
NeuroMorph: Unsupervised Shape Interpolation and Correspondence in One Go

NeuroMorph: Unsupervised Shape Interpolation and Correspondence in One Go This repository provides our implementation of the CVPR 2021 paper NeuroMorp

Meta Research 35 Dec 08, 2022
[CVPR 2022] CoTTA Code for our CVPR 2022 paper Continual Test-Time Domain Adaptation

CoTTA Code for our CVPR 2022 paper Continual Test-Time Domain Adaptation Prerequisite Please create and activate the following conda envrionment. To r

Qin Wang 87 Jan 08, 2023
Pseudo-Visual Speech Denoising

Pseudo-Visual Speech Denoising This code is for our paper titled: Visual Speech Enhancement Without A Real Visual Stream published at WACV 2021. Autho

Sindhu 94 Oct 22, 2022
CALVIN - A benchmark for Language-Conditioned Policy Learning for Long-Horizon Robot Manipulation Tasks

CALVIN CALVIN - A benchmark for Language-Conditioned Policy Learning for Long-Horizon Robot Manipulation Tasks Oier Mees, Lukas Hermann, Erick Rosete,

Oier Mees 107 Dec 26, 2022
In this project we combine techniques from neural voice cloning and musical instrument synthesis to achieve good results from as little as 16 seconds of target data.

Neural Instrument Cloning In this project we combine techniques from neural voice cloning and musical instrument synthesis to achieve good results fro

Erland 127 Dec 23, 2022
Code release for Local Light Field Fusion at SIGGRAPH 2019

Local Light Field Fusion Project | Video | Paper Tensorflow implementation for novel view synthesis from sparse input images. Local Light Field Fusion

1.1k Dec 27, 2022
A highly efficient and modular implementation of Gaussian Processes in PyTorch

GPyTorch GPyTorch is a Gaussian process library implemented using PyTorch. GPyTorch is designed for creating scalable, flexible, and modular Gaussian

3k Jan 02, 2023