ilpyt: imitation learning library with modular, baseline implementations in Pytorch

Overview

ilpyt

The imitation learning toolbox (ilpyt) contains modular implementations of common deep imitation learning algorithms in PyTorch, with unified infrastructure supporting key imitation learning and reinforcement learning algorithms. You can read more about ilpyt in our white paper.

Documentation is available here.

Table of Contents

Main Features

  • Implementation of baseline imitation learning algorithms: BC, DAgger, AppL, GCL, GAIL.
  • Implementation of baseline reinforcement learning algorithms, for comparison purposes: DQN, A2C, PPO2.
  • Modular, extensible framework for training, evaluating, and testing imitation learning (and reinforcement learning) algorithms.
  • Simple algorithm API which exposes train and test methods, allowing for quick library setup and use (a basic usage of the library requires less than ten lines of code to have a fully functioning train and test pipeline).
  • A modular infrastructure for easy modification and reuse of existing components for novel algorithm implementations.
  • Parallel and serialization modes, allowing for faster, optimized operations or serial operations for debugging.
  • Compatibility with the OpenAI Gym environment interface for access to many existing benchmark learning environments, as well as the flexibility to create custom environments.

Installation

Note: ilpyt has only been tested on Ubuntu 20.04, and with Python 3.8.5.

  1. In order to install ilpyt, there are a few prerequisites required. The following commands will setup all the basics so you can run ilpyt with the OpenAI Gym environments:
# Install system-based packages
apt-get install cmake python3-pip python3-testresources freeglut3-dev xvfb

# Install Wheel
pip3 install --no-cache-dir --no-warn-script-location wheel
  1. Install ilpyt using pip:
pip3 install ilpyt

# Or to install from source:
# pip3 install -e .
  1. (Optional) Run the associated Python tests to confirm the package has installed successfully:
git clone https://github.com/mitre/ilpyt.git
cd ilpyt/

# To run all the tests
# If running headless, prepend the pytest command with `xvfb-run -a -s "-screen 0 1400x900x24 +extension RANDR" --`
pytest tests/

# Example: to run an individual test, like DQN
pytest tests/test_dqn.py 

Getting Started

Various sample Python script(s) of how to run the toolbox can be found within the examples directory. Documentation is available here.

Basic Usage

Various sample Python script(s) of how to run the toolbox can be found within the examples directory. A minimal train and test snippet for an imitation learning algorithm takes less than 10 lines of code in ilpyt. In this basic example, we are training a behavioral cloning algorithm for 10,000 epochs before testing the best policy for 100 episodes.

import ilpyt
from ilpyt.agents.imitation_agent import ImitationAgent
from ilpyt.algos.bc import BC

env = ilpyt.envs.build_env(env_id='LunarLander-v2',  num_env=16)
net = ilpyt.nets.choose_net(env)
agent = ImitationAgent(net=net, lr=0.0001)

algo = BC(agent=agent, env=env)
algo.train(num_epochs=10000, expert_demos='demos/LunarLander-v2/demos.pkl')
algo.test(num_episodes=100)

Code Organization

workflow

At a high-level, the algorithm orchestrates the training and testing of our agent in a particular environment. During these training or testing loops, a runner will execute the agent and environment in a loop to collect (state, action, reward, next state) transitions. The individual components of a transition (e.g., state or action) are typically torch Tensors. The agent can then use this batch of transitions to update its network and move towards an optimal action policy.

Customization

To implement a new algorithm, one simply has to extend the BaseAlgorithm and BaseAgent abstract classes (for even further customization, one can even make custom networks by extending the BaseNetwork interface). Each of these components is modular (see code organization for more details), allowing components to be easily swapped out. (For example, the agent.generator used in the GAIL algorithm can be easily swapped between PPOAgent, DQNAgent, or A2Cagent. In a similar way, new algorithm implementations can utilize existing implemented classes as building blocks, or extend the class interfaces for more customization.)

Adding a custom environment is as simple as extending the OpenAI Gym Environment interface and registering it within your local gym environment registry.

See agents/base_agent.py, algos/base_algo.py, nets/base_net.py for more details.

Supported Algorithms and Environments

The following imitation learning (IL) algorithms are supported:

The following reinforcement learning (RL) algorithms are supported:

The following OpenAI Gym Environments are supported. Environments with:

  • Observation space: Box(x,) and Box(x,y,z)
  • Action space: Discrete(x) and Box(x,)

NOTE: To create your own custom environment, just follow the OpenAI Gym Environment interface. i.e., your environment must implement the following methods (and inherit from the OpenAI Gym Class). More detailed instructions can be found on the OpenAI GitHub repository page on creating custom Gym environments.

Benchmarks

Sample train and test results of the baseline algorithms on some environments:

CartPole-v0 MountainCar-v0 MountainCarContinuous-v0 LunarLander-v2 LunarLanderContinuous-v2
Threshold 200 -110 90 200 200
Expert (Mean/Std) 200.00 / 0.00 -98.71 / 7.83 93.36 / 0.05 268.09 / 21.18 283.83 / 17.70
BC (Mean/Std) 200.00 / 0.00 -100.800 / 13.797 93.353 / 0.113 244.295 / 97.765 285.895 / 14.584
DAgger (Mean/Std) 200.00 / 0.00 -102.36 / 15.38 93.20 / 0.17 230.15 / 122.604 285.85 / 14.61
GAIL (Mean/Std) 200.00 / 0.00 -104.31 / 17.21 79.78 / 6.23 201.88 / 93.82 282.00 / 31.73
GCL 200.00 / 0.00 - - 212.321 / 119.933 255.414 / 76.917
AppL(Mean/Std) 200.00 / 0.00 -108.60 / 22.843 - - -
DQN (Mean/Std) - - - 281.96 / 24.57 -
A2C (Mean/Std) - - 201.26 / 62.52 -
PPO (Mean/Std) - - - 249.72 / 75.05 -

The pre-trained weights for these models can be found in our Model Zoo.

Citation

If you use ilpyt for your work, please cite our white paper:

@misc{ilpyt_2021,
  author = {Vu, Amanda and Tapley, Alex and Bissey, Brett},
  title = {ilpyt: Imitation Learning Research Code Base in PyTorch},
  year = {2021},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/mitre/ilpyt}},
}
Owner
The MITRE Corporation
Open Source Software from the MITRE Corporation
The MITRE Corporation
TensorFlow Implementation of "Show, Attend and Tell"

Show, Attend and Tell Update (December 2, 2016) TensorFlow implementation of Show, Attend and Tell: Neural Image Caption Generation with Visual Attent

Yunjey Choi 902 Nov 29, 2022
CUAD

Contract Understanding Atticus Dataset This repository contains code for the Contract Understanding Atticus Dataset (CUAD), a dataset for legal contra

The Atticus Project 273 Dec 17, 2022
Accompanying code for the paper "A Kernel Test for Causal Association via Noise Contrastive Backdoor Adjustment".

#backdoor-HSIC (bd_HSIC) Accompanying code for the paper "A Kernel Test for Causal Association via Noise Contrastive Backdoor Adjustment". To generate

Robert Hu 0 Nov 25, 2021
Code for "Hierarchical Skills for Efficient Exploration" HSD-3 Algorithm and Baselines

Hierarchical Skills for Efficient Exploration This is the source code release for the paper Hierarchical Skills for Efficient Exploration. It contains

Facebook Research 38 Dec 06, 2022
DatasetGAN: Efficient Labeled Data Factory with Minimal Human Effort

DatasetGAN This is the official code and data release for: DatasetGAN: Efficient Labeled Data Factory with Minimal Human Effort Yuxuan Zhang*, Huan Li

302 Jan 05, 2023
A PyTorch Image-Classification With AlexNet And ResNet50.

PyTorch 图像分类 依赖库的下载与安装 在终端中执行 pip install -r -requirements.txt 完成项目依赖库的安装 使用方式 数据集的准备 STL10 数据集 下载:STL-10 Dataset 存储位置:将下载后的数据集中 train_X.bin,train_y.b

FYH 4 Feb 22, 2022
Official PyTorch Implementation of paper "Deep 3D Mask Volume for View Synthesis of Dynamic Scenes", ICCV 2021.

Deep 3D Mask Volume for View Synthesis of Dynamic Scenes Official PyTorch Implementation of paper "Deep 3D Mask Volume for View Synthesis of Dynamic S

Ken Lin 17 Oct 12, 2022
nnFormer: Interleaved Transformer for Volumetric Segmentation Code for paper "nnFormer: Interleaved Transformer for Volumetric Segmentation "

nnFormer: Interleaved Transformer for Volumetric Segmentation Code for paper "nnFormer: Interleaved Transformer for Volumetric Segmentation ". Please

jsguo 610 Dec 28, 2022
implement of SwiftNet:Real-time Video Object Segmentation

SwiftNet The official PyTorch implementation of SwiftNet:Real-time Video Object Segmentation, which has been accepted by CVPR2021. Requirements Python

haochen wang 64 Dec 14, 2022
Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive Learning.

Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive Learning. Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive

<a href=[email protected](SZ)"> 7 Dec 16, 2021
Sound Event Detection with FilterAugment

Sound Event Detection with FilterAugment Official implementation of Heavily Augmented Sound Event Detection utilizing Weak Predictions (DCASE2021 Chal

43 Aug 28, 2022
Scalable and Elastic Deep Reinforcement Learning Using PyTorch. Please star. 🔥

ElegantRL “小雅”: Scalable and Elastic Deep Reinforcement Learning ElegantRL is developed for researchers and practitioners with the following advantage

AI4Finance Foundation 2.5k Jan 05, 2023
A Lightweight Experiment & Resource Monitoring Tool 📺

Lightweight Experiment & Resource Monitoring 📺 "Did I already run this experiment before? How many resources are currently available on my cluster?"

170 Dec 28, 2022
TART - A PyTorch implementation for Transition Matrix Representation of Trees with Transposed Convolutions

TART This project is a PyTorch implementation for Transition Matrix Representati

Lee Sael 2 Jan 19, 2022
A stable algorithm for GAN training

DRAGAN (Deep Regret Analytic Generative Adversarial Networks) Link to our paper - https://arxiv.org/abs/1705.07215 Pytorch implementation (thanks!) -

195 Oct 10, 2022
ADSPM: Attribute-Driven Spontaneous Motion in Unpaired Image Translation

ADSPM: Attribute-Driven Spontaneous Motion in Unpaired Image Translation This repository provides a PyTorch implementation of ADSPM. Requirements Pyth

24 Jul 24, 2022
Code for "LoFTR: Detector-Free Local Feature Matching with Transformers", CVPR 2021

LoFTR: Detector-Free Local Feature Matching with Transformers Project Page | Paper LoFTR: Detector-Free Local Feature Matching with Transformers Jiami

ZJU3DV 1.4k Jan 04, 2023
ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation

ENet in Caffe Execution times and hardware requirements Network 1024x512 1280x720 Parameters Model size (fp32) ENet 20.4 ms 32.9 ms 0.36 M 1.5 MB SegN

Timo Sämann 561 Jan 04, 2023
The Body Part Regression (BPR) model translates the anatomy in a radiologic volume into a machine-interpretable form.

Copyright © German Cancer Research Center (DKFZ), Division of Medical Image Computing (MIC). Please make sure that your usage of this code is in compl

MIC-DKFZ 40 Dec 18, 2022
Spatial Action Maps for Mobile Manipulation (RSS 2020)

spatial-action-maps Update: Please see our new spatial-intention-maps repository, which extends this work to multi-agent settings. It contains many ne

Jimmy Wu 27 Nov 30, 2022