Unofficial JAX implementations of Deep Learning models

Overview

JAX Models

license-shield release-shield python-shield code-style

Table of Contents
  1. About The Project
  2. Getting Started
  3. Contributing
  4. License
  5. Contact

About The Project

The JAX Models repository aims to provide open sourced JAX/Flax implementations for research papers originally without code or code written with frameworks other than JAX. The goal of this project is to make a collection of models, layers, activations and other utilities that are most commonly used for research. All papers and derived or translated code is cited in either the README or the docstrings. If you think that any citation is missed then please raise an issue.

All implementations provided here are available on Papers With Code.


Available model implementations for JAX are:
  1. MetaFormer is Actually What You Need for Vision (Weihao Yu et al., 2021)
  2. Augmenting Convolutional networks with attention-based aggregation (Hugo Touvron et al., 2021)
  3. MPViT : Multi-Path Vision Transformer for Dense Prediction (Youngwan Lee et al., 2021)
  4. MLP-Mixer: An all-MLP Architecture for Vision (Ilya Tolstikhin et al., 2021)
  5. Patches Are All You Need (Anonymous et al., 2021)
  6. SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers (Enze Xie et al., 2021)
  7. A ConvNet for the 2020s (Zhuang Liu et al., 2021)
  8. Masked Autoencoders Are Scalable Vision Learners (Kaiming He et al., 2021)

Available layers for out-of-the-box integration:
  1. DropPath (Stochastic Depth) (Gao Huang et al., 2021)
  2. Squeeze-and-Excitation Layer (Jie Hu et al. 2019)
  3. Depthwise Convolution (François Chollet, 2017)

Prerequisites

Prerequisites can be installed separately through the requirements.txt file in the main directory using:

pip install -r requirements.txt

The use of a virtual environment is highly recommended to avoid version incompatibilites.

Installation

This project is built with Python 3 for the latest JAX/Flax versions and can be directly installed via pip.

pip install jax-models

If you wish to use the latest version then you can directly clone the repository too.

git clone https://github.com/DarshanDeshpande/jax-models.git

Usage

To see all model architectures available:

from jax_models.models.model_registry import list_models
from pprint import pprint

pprint(list_models())

To load your desired model:

from jax_models.models.model_registry import load_model
load_model('mpvit-base', attach_head=True, num_classes=1000, dropout=0.1)

Contributing

Please raise an issue if any implementation gives incorrect results, crashes unexpectedly during training/inference or if any citation is missing.

You can contribute to jax_models by supporting me with compute resources or by contributing your own resources to provide pretrained weights.

If you wish to donate to this inititative then please drop me a mail here.

License

Distributed under the Apache 2.0 License. See LICENSE for more information.

Contact

Feel free to reach out for any issues or requests related to these implementations

Darshan Deshpande - Email | Twitter | LinkedIn

You might also like...
Very deep VAEs in JAX/Flax
Very deep VAEs in JAX/Flax

Very Deep VAEs in JAX/Flax Implementation of the experiments in the paper Very Deep VAEs Generalize Autoregressive Models and Can Outperform Them on I

Conservative Q Learning for Offline Reinforcement Reinforcement Learning in JAX
Conservative Q Learning for Offline Reinforcement Reinforcement Learning in JAX

CQL-JAX This repository implements Conservative Q Learning for Offline Reinforcement Reinforcement Learning in JAX (FLAX). Implementation is built on

PyTorch implementations of neural network models for keyword spotting
PyTorch implementations of neural network models for keyword spotting

Honk: CNNs for Keyword Spotting Honk is a PyTorch reimplementation of Google's TensorFlow convolutional neural networks for keyword spotting, which ac

Unofficial implementation of Proxy Anchor Loss for Deep Metric Learning
Unofficial implementation of Proxy Anchor Loss for Deep Metric Learning

Proxy Anchor Loss for Deep Metric Learning Unofficial pytorch, tensorflow and mxnet implementations of Proxy Anchor Loss for Deep Metric Learning. Not

Time-series-deep-learning - Developing Deep learning LSTM, BiLSTM models, and NeuralProphet for multi-step time-series forecasting of stock price.
Time-series-deep-learning - Developing Deep learning LSTM, BiLSTM models, and NeuralProphet for multi-step time-series forecasting of stock price.

Stock Price Prediction Using Deep Learning Univariate Time Series Predicting stock price using historical data of a company using Neural networks for

FedJAX is a library for developing custom Federated Learning (FL) algorithms in JAX.

FedJAX: Federated learning with JAX What is FedJAX? FedJAX is a library for developing custom Federated Learning (FL) algorithms in JAX. FedJAX priori

Objax Apache-2Objax (🥉19 · ⭐ 580) - Objax is a machine learning framework that provides an Object.. Apache-2 jax

Objax Tutorials | Install | Documentation | Philosophy This is not an officially supported Google product. Objax is an open source machine learning fr

Plug-n-Play Reinforcement Learning in Python with OpenAI Gym and JAX
Plug-n-Play Reinforcement Learning in Python with OpenAI Gym and JAX

coax is built on top of JAX, but it doesn't have an explicit dependence on the jax python package. The reason is that your version of jaxlib will depend on your CUDA version.

JAX code for the paper
JAX code for the paper "Control-Oriented Model-Based Reinforcement Learning with Implicit Differentiation"

Optimal Model Design for Reinforcement Learning This repository contains JAX code for the paper Control-Oriented Model-Based Reinforcement Learning wi

Comments
  • Missing Axis Swap in ExtractPatches and MergePatches

    Missing Axis Swap in ExtractPatches and MergePatches

    In patch_utils.py, the modules ExtractPatches and MergePatches are missing an axis swap between the reshapes, resulting in the extracted patches becoming horizontal stripes. For example, if we follow the code in ExtractPatches:

    >>> inputs = jnp.arange(16).reshape(1, 4, 4, 1)
    >>> inputs[0, :, :, 0]
    
    DeviceArray([[ 0,  1,  2,  3],
                 [ 4,  5,  6,  7],
                 [ 8,  9, 10, 11],
                 [12, 13, 14, 15]], dtype=int32)
    
    >>> patch_size = 2
    >>> batch, height, width, channels = inputs.shape
    >>> height, width = height // patch_size, width // patch_size
    >>> x = jnp.reshape(inputs, (batch, height, patch_size, width, patch_size, channels))
    >>> x = jnp.reshape(x, (batch, height * width, patch_size ** 2 * channels))
    >>> x[0, 0, :]
    
    DeviceArray([0, 1, 2, 3], dtype=int32)
    

    We see that the first patch extracted is not the patch containing [0, 1, 4, 5], but the horizontal stripe [0, 1, 2, 3]. To fix this problem, we should add an axis swap. For ExtractPatches, this should be:

    batch, height, width, channels = inputs.shape
    height, width = height // patch_size, width // patch_size
    x = jnp.reshape(
        inputs, (batch, height, patch_size, width, patch_size, channels)
    )
    x = jnp.swapaxes(x, 2, 3)
    x = jnp.reshape(x, (batch, height * width, patch_size ** 2 * channels))
    

    For MergePatches, this should be:

    batch, length, _ = inputs.shape
    height = width = int(length**0.5)
    x = jnp.reshape(inputs, (batch, height, width, patch_size, patch_size, -1))
    x = jnp.swapaxes(x, 2, 3)
    x = jnp.reshape(x, (batch, height * patch_size, width * patch_size, -1))
    
    bug 
    opened by young-geng 4
  • fix convnext to make it work with jax.jit

    fix convnext to make it work with jax.jit

    Hey, first of all, thanks for the nice codebase. When doing inference using the convnext model, I noticed the following issue:

    Calling x.item() will call float(x), which breaks the jit tracer. We can remove the list comprehension in unnecessary conversion to make jax.jit work. Without jax.jit, the model is very slow for me, running with only ~30% GPU utilization (RTX 3090).

    This issue could apply to other models as well, maybe it is a good idea to include a test for applying jax.jit to each model?

    opened by maxidl 1
Releases(v0.5-van)
Owner
Helping Machines Learn Better 💻😃
The code for our paper Semi-Supervised Learning with Multi-Head Co-Training

Semi-Supervised Learning with Multi-Head Co-Training (PyTorch) Abstract Co-training, extended from self-training, is one of the frameworks for semi-su

cmc 6 Dec 04, 2022
piSTAR Lab is a modular platform built to make AI experimentation accessible and fun. (pistar.ai)

piSTAR Lab WARNING: This is an early release. Overview piSTAR Lab is a modular deep reinforcement learning platform built to make AI experimentation a

piSTAR Lab 0 Aug 01, 2022
Reviving Iterative Training with Mask Guidance for Interactive Segmentation

This repository provides the source code for training and testing state-of-the-art click-based interactive segmentation models with the official PyTorch implementation

Visual Understanding Lab @ Samsung AI Center Moscow 406 Jan 01, 2023
Code for Discriminative Sounding Objects Localization (NeurIPS 2020)

Discriminative Sounding Objects Localization Code for our NeurIPS 2020 paper Discriminative Sounding Objects Localization via Self-supervised Audiovis

51 Dec 11, 2022
CrossNorm and SelfNorm for Generalization under Distribution Shifts (ICCV 2021)

CrossNorm (CN) and SelfNorm (SN) (Accepted at ICCV 2021) This is the official PyTorch implementation of our CNSN paper, in which we propose CrossNorm

100 Dec 28, 2022
CLIP2Video: Mastering Video-Text Retrieval via Image CLIP

CLIP2Video: Mastering Video-Text Retrieval via Image CLIP The implementation of paper CLIP2Video: Mastering Video-Text Retrieval via Image CLIP. CLIP2

168 Dec 29, 2022
Rule-based Customer Segmentation

Rule-based Customer Segmentation Business Problem A game company wants to create level-based new customer definitions (personas) by using some feature

Cem Çaluk 2 Jan 03, 2022
[CVPR'21 Oral] Seeing Out of tHe bOx: End-to-End Pre-training for Vision-Language Representation Learning

Seeing Out of tHe bOx: End-to-End Pre-training for Vision-Language Representation Learning [CVPR'21, Oral] By Zhicheng Huang*, Zhaoyang Zeng*, Yupan H

Multimedia Research 196 Dec 13, 2022
Supplemental Code for "ImpressionNet :A Multi view Approach to Predict Socio Facial Impressions"

Supplemental Code for "ImpressionNet :A Multi view Approach to Predict Socio Facial Impressions" Environment requirement This code is based on Python

Rohan Kumar Gupta 1 Dec 19, 2021
Continual Learning of Electronic Health Records (EHR).

Continual Learning of Longitudinal Health Records Repo for reproducing the experiments in Continual Learning of Longitudinal Health Records (2021). Re

Jacob 7 Oct 21, 2022
Why Are You Weird? Infusing Interpretability in Isolation Forest for Anomaly Detection

Why, hello there! This is the supporting notebook for the research paper — Why Are You Weird? Infusing Interpretability in Isolation Forest for Anomal

2 Dec 14, 2021
ST++: Make Self-training Work Better for Semi-supervised Semantic Segmentation

ST++ This is the official PyTorch implementation of our paper: ST++: Make Self-training Work Better for Semi-supervised Semantic Segmentation. Lihe Ya

Lihe Yang 147 Jan 03, 2023
Official pytorch implementation of the IrwGAN for unaligned image-to-image translation

IrwGAN (ICCV2021) Unaligned Image-to-Image Translation by Learning to Reweight [Update] 12/15/2021 All dataset are released, trained models and genera

37 Nov 09, 2022
Neural style transfer as a class in PyTorch

pt-styletransfer Neural style transfer as a class in PyTorch Based on: https://github.com/alexis-jacq/Pytorch-Tutorials Adds: StyleTransferNet as a cl

Tyler Kvochick 31 Jun 27, 2022
AugLy is a data augmentations library that currently supports four modalities (audio, image, text & video) and over 100 augmentations

AugLy is a data augmentations library that currently supports four modalities (audio, image, text & video) and over 100 augmentations. Each modality’s augmentations are contained within its own sub-l

Facebook Research 4.6k Jan 09, 2023
Part-Aware Data Augmentation for 3D Object Detection in Point Cloud

Part-Aware Data Augmentation for 3D Object Detection in Point Cloud This repository contains a reference implementation of our Part-Aware Data Augment

Jaeseok Choi 62 Jan 03, 2023
A very simple tool for situations where optimization with onnx-simplifier would exceed the Protocol Buffers upper file size limit of 2GB, or simply to separate onnx files to any size you want.

sne4onnx A very simple tool for situations where optimization with onnx-simplifier would exceed the Protocol Buffers upper file size limit of 2GB, or

Katsuya Hyodo 10 Aug 30, 2022
A full pipeline AutoML tool for tabular data

HyperGBM Doc | 中文 We Are Hiring! Dear folks,we are offering challenging opportunities located in Beijing for both professionals and students who are k

DataCanvas 240 Jan 03, 2023
Code for paper entitled "Improving Novelty Detection using the Reconstructions of Nearest Neighbours"

NLN: Nearest-Latent-Neighbours A repository containing the implementation of the paper entitled Improving Novelty Detection using the Reconstructions

Michael (Misha) Mesarcik 4 Dec 14, 2022
Generalizing Gaze Estimation with Outlier-guided Collaborative Adaptation

Generalizing Gaze Estimation with Outlier-guided Collaborative Adaptation Our paper is accepted by ICCV2021. Picture: Overview of the proposed Plug-an

Yunfei Liu 32 Dec 10, 2022