Unofficial JAX implementations of Deep Learning models

Overview

JAX Models

license-shield release-shield python-shield code-style

Table of Contents
  1. About The Project
  2. Getting Started
  3. Contributing
  4. License
  5. Contact

About The Project

The JAX Models repository aims to provide open sourced JAX/Flax implementations for research papers originally without code or code written with frameworks other than JAX. The goal of this project is to make a collection of models, layers, activations and other utilities that are most commonly used for research. All papers and derived or translated code is cited in either the README or the docstrings. If you think that any citation is missed then please raise an issue.

All implementations provided here are available on Papers With Code.


Available model implementations for JAX are:
  1. MetaFormer is Actually What You Need for Vision (Weihao Yu et al., 2021)
  2. Augmenting Convolutional networks with attention-based aggregation (Hugo Touvron et al., 2021)
  3. MPViT : Multi-Path Vision Transformer for Dense Prediction (Youngwan Lee et al., 2021)
  4. MLP-Mixer: An all-MLP Architecture for Vision (Ilya Tolstikhin et al., 2021)
  5. Patches Are All You Need (Anonymous et al., 2021)
  6. SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers (Enze Xie et al., 2021)
  7. A ConvNet for the 2020s (Zhuang Liu et al., 2021)
  8. Masked Autoencoders Are Scalable Vision Learners (Kaiming He et al., 2021)

Available layers for out-of-the-box integration:
  1. DropPath (Stochastic Depth) (Gao Huang et al., 2021)
  2. Squeeze-and-Excitation Layer (Jie Hu et al. 2019)
  3. Depthwise Convolution (François Chollet, 2017)

Prerequisites

Prerequisites can be installed separately through the requirements.txt file in the main directory using:

pip install -r requirements.txt

The use of a virtual environment is highly recommended to avoid version incompatibilites.

Installation

This project is built with Python 3 for the latest JAX/Flax versions and can be directly installed via pip.

pip install jax-models

If you wish to use the latest version then you can directly clone the repository too.

git clone https://github.com/DarshanDeshpande/jax-models.git

Usage

To see all model architectures available:

from jax_models.models.model_registry import list_models
from pprint import pprint

pprint(list_models())

To load your desired model:

from jax_models.models.model_registry import load_model
load_model('mpvit-base', attach_head=True, num_classes=1000, dropout=0.1)

Contributing

Please raise an issue if any implementation gives incorrect results, crashes unexpectedly during training/inference or if any citation is missing.

You can contribute to jax_models by supporting me with compute resources or by contributing your own resources to provide pretrained weights.

If you wish to donate to this inititative then please drop me a mail here.

License

Distributed under the Apache 2.0 License. See LICENSE for more information.

Contact

Feel free to reach out for any issues or requests related to these implementations

Darshan Deshpande - Email | Twitter | LinkedIn

You might also like...
Very deep VAEs in JAX/Flax
Very deep VAEs in JAX/Flax

Very Deep VAEs in JAX/Flax Implementation of the experiments in the paper Very Deep VAEs Generalize Autoregressive Models and Can Outperform Them on I

Conservative Q Learning for Offline Reinforcement Reinforcement Learning in JAX
Conservative Q Learning for Offline Reinforcement Reinforcement Learning in JAX

CQL-JAX This repository implements Conservative Q Learning for Offline Reinforcement Reinforcement Learning in JAX (FLAX). Implementation is built on

PyTorch implementations of neural network models for keyword spotting
PyTorch implementations of neural network models for keyword spotting

Honk: CNNs for Keyword Spotting Honk is a PyTorch reimplementation of Google's TensorFlow convolutional neural networks for keyword spotting, which ac

Unofficial implementation of Proxy Anchor Loss for Deep Metric Learning
Unofficial implementation of Proxy Anchor Loss for Deep Metric Learning

Proxy Anchor Loss for Deep Metric Learning Unofficial pytorch, tensorflow and mxnet implementations of Proxy Anchor Loss for Deep Metric Learning. Not

Time-series-deep-learning - Developing Deep learning LSTM, BiLSTM models, and NeuralProphet for multi-step time-series forecasting of stock price.
Time-series-deep-learning - Developing Deep learning LSTM, BiLSTM models, and NeuralProphet for multi-step time-series forecasting of stock price.

Stock Price Prediction Using Deep Learning Univariate Time Series Predicting stock price using historical data of a company using Neural networks for

FedJAX is a library for developing custom Federated Learning (FL) algorithms in JAX.

FedJAX: Federated learning with JAX What is FedJAX? FedJAX is a library for developing custom Federated Learning (FL) algorithms in JAX. FedJAX priori

Objax Apache-2Objax (🥉19 · ⭐ 580) - Objax is a machine learning framework that provides an Object.. Apache-2 jax

Objax Tutorials | Install | Documentation | Philosophy This is not an officially supported Google product. Objax is an open source machine learning fr

Plug-n-Play Reinforcement Learning in Python with OpenAI Gym and JAX
Plug-n-Play Reinforcement Learning in Python with OpenAI Gym and JAX

coax is built on top of JAX, but it doesn't have an explicit dependence on the jax python package. The reason is that your version of jaxlib will depend on your CUDA version.

JAX code for the paper
JAX code for the paper "Control-Oriented Model-Based Reinforcement Learning with Implicit Differentiation"

Optimal Model Design for Reinforcement Learning This repository contains JAX code for the paper Control-Oriented Model-Based Reinforcement Learning wi

Comments
  • Missing Axis Swap in ExtractPatches and MergePatches

    Missing Axis Swap in ExtractPatches and MergePatches

    In patch_utils.py, the modules ExtractPatches and MergePatches are missing an axis swap between the reshapes, resulting in the extracted patches becoming horizontal stripes. For example, if we follow the code in ExtractPatches:

    >>> inputs = jnp.arange(16).reshape(1, 4, 4, 1)
    >>> inputs[0, :, :, 0]
    
    DeviceArray([[ 0,  1,  2,  3],
                 [ 4,  5,  6,  7],
                 [ 8,  9, 10, 11],
                 [12, 13, 14, 15]], dtype=int32)
    
    >>> patch_size = 2
    >>> batch, height, width, channels = inputs.shape
    >>> height, width = height // patch_size, width // patch_size
    >>> x = jnp.reshape(inputs, (batch, height, patch_size, width, patch_size, channels))
    >>> x = jnp.reshape(x, (batch, height * width, patch_size ** 2 * channels))
    >>> x[0, 0, :]
    
    DeviceArray([0, 1, 2, 3], dtype=int32)
    

    We see that the first patch extracted is not the patch containing [0, 1, 4, 5], but the horizontal stripe [0, 1, 2, 3]. To fix this problem, we should add an axis swap. For ExtractPatches, this should be:

    batch, height, width, channels = inputs.shape
    height, width = height // patch_size, width // patch_size
    x = jnp.reshape(
        inputs, (batch, height, patch_size, width, patch_size, channels)
    )
    x = jnp.swapaxes(x, 2, 3)
    x = jnp.reshape(x, (batch, height * width, patch_size ** 2 * channels))
    

    For MergePatches, this should be:

    batch, length, _ = inputs.shape
    height = width = int(length**0.5)
    x = jnp.reshape(inputs, (batch, height, width, patch_size, patch_size, -1))
    x = jnp.swapaxes(x, 2, 3)
    x = jnp.reshape(x, (batch, height * patch_size, width * patch_size, -1))
    
    bug 
    opened by young-geng 4
  • fix convnext to make it work with jax.jit

    fix convnext to make it work with jax.jit

    Hey, first of all, thanks for the nice codebase. When doing inference using the convnext model, I noticed the following issue:

    Calling x.item() will call float(x), which breaks the jit tracer. We can remove the list comprehension in unnecessary conversion to make jax.jit work. Without jax.jit, the model is very slow for me, running with only ~30% GPU utilization (RTX 3090).

    This issue could apply to other models as well, maybe it is a good idea to include a test for applying jax.jit to each model?

    opened by maxidl 1
Releases(v0.5-van)
Owner
Helping Machines Learn Better 💻😃
App customer segmentation cohort rfm clustering

CUSTOMER SEGMENTATION COHORT RFM CLUSTERING TỔNG QUAN VỀ HỆ THỐNG DỮ LIỆU Nên chuyển qua theme màu dark thì sẽ nhìn đẹp hơn https://customer-segmentat

hieulmsc 3 Dec 18, 2021
SSD: A Unified Framework for Self-Supervised Outlier Detection [ICLR 2021]

SSD: A Unified Framework for Self-Supervised Outlier Detection [ICLR 2021] Pdf: https://openreview.net/forum?id=v5gjXpmR8J Code for our ICLR 2021 pape

Princeton INSPIRE Research Group 113 Nov 27, 2022
Code for Paper: Self-supervised Learning of Motion Capture

Self-supervised Learning of Motion Capture This is code for the paper: Hsiao-Yu Fish Tung, Hsiao-Wei Tung, Ersin Yumer, Katerina Fragkiadaki, Self-sup

Hsiao-Yu Fish Tung 87 Jul 25, 2022
Weakly-Supervised Semantic Segmentation Network with Deep Seeded Region Growing (CVPR 2018).

Weakly-Supervised Semantic Segmentation Network with Deep Seeded Region Growing (CVPR2018) By Zilong Huang, Xinggang Wang, Jiasi Wang, Wenyu Liu and J

Zilong Huang 245 Dec 13, 2022
The repo for reproducing Seed-driven Document Ranking for Systematic Reviews: A Reproducibility Study

ECIR Reproducibility Paper: Seed-driven Document Ranking for Systematic Reviews: A Reproducibility Study This code corresponds to the reproducibility

ielab 3 Mar 31, 2022
Code for the paper "Adversarially Regularized Autoencoders (ICML 2018)" by Zhao, Kim, Zhang, Rush and LeCun

ARAE Code for the paper "Adversarially Regularized Autoencoders (ICML 2018)" by Zhao, Kim, Zhang, Rush and LeCun https://arxiv.org/abs/1706.04223 Disc

Junbo (Jake) Zhao 399 Jan 02, 2023
Source code and dataset of the paper "Contrastive Adaptive Propagation Graph Neural Networks forEfficient Graph Learning"

CAPGNN Source code and dataset of the paper "Contrastive Adaptive Propagation Graph Neural Networks forEfficient Graph Learning" Paper URL: https://ar

1 Mar 12, 2022
CALVIN - A benchmark for Language-Conditioned Policy Learning for Long-Horizon Robot Manipulation Tasks

CALVIN CALVIN - A benchmark for Language-Conditioned Policy Learning for Long-Horizon Robot Manipulation Tasks Oier Mees, Lukas Hermann, Erick Rosete,

Oier Mees 107 Dec 26, 2022
Official code of Team Yao at Multi-Modal-Fact-Verification-2022

Official code of Team Yao at Multi-Modal-Fact-Verification-2022 A Multi-Modal Fact Verification dataset released as part of the De-Factify workshop in

Wei-Yao Wang 11 Nov 15, 2022
Neural machine translation between the writings of Shakespeare and modern English using TensorFlow

Shakespeare translations using TensorFlow This is an example of using the new Google's TensorFlow library on monolingual translation going from modern

Motoki Wu 245 Dec 28, 2022
Robust Partial Matching for Person Search in the Wild

APNet for Person Search Introduction This is the code of Robust Partial Matching for Person Search in the Wild accepted in CVPR2020. The Align-to-Part

Yingji Zhong 36 Dec 18, 2022
PyTorch implementation of PSPNet segmentation network

pspnet-pytorch PyTorch implementation of PSPNet segmentation network Original paper Pyramid Scene Parsing Network Details This is a slightly different

Roman Trusov 532 Dec 29, 2022
Catbird is an open source paraphrase generation toolkit based on PyTorch.

Catbird is an open source paraphrase generation toolkit based on PyTorch. Quick Start Requirements and Installation The project is based on PyTorch 1.

Afonso Salgado de Sousa 5 Dec 15, 2022
Its a Plant Leaf Disease Detection System based on Machine Learning.

My_Project_Code Its a Plant Leaf Disease Detection System based on Machine Learning. I have used Tomato Leaves Dataset from kaggle. This system detect

Sanskriti Sidola 3 Jun 15, 2022
This repo provides code for QB-Norm (Cross Modal Retrieval with Querybank Normalisation)

This repo provides code for QB-Norm (Cross Modal Retrieval with Querybank Normalisation) Usage example python dynamic_inverted_softmax.py --sims_train

36 Dec 29, 2022
[ICCV 2021] Amplitude-Phase Recombination: Rethinking Robustness of Convolutional Neural Networks in Frequency Domain

Amplitude-Phase Recombination (ICCV'21) Official PyTorch implementation of "Amplitude-Phase Recombination: Rethinking Robustness of Convolutional Neur

Guangyao Chen 53 Oct 05, 2022
harmonic-percussive-residual separation algorithm wrapped as a VST3 plugin (iPlug2)

Harmonic-percussive-residual separation plug-in This work is a study on the plausibility of a sines-transients-noise decomposition inspired algorithm

Derp Learning 9 Sep 01, 2022
Code release for "MERLOT Reserve: Neural Script Knowledge through Vision and Language and Sound"

merlot_reserve Code release for "MERLOT Reserve: Neural Script Knowledge through Vision and Language and Sound" MERLOT Reserve (in submission) is a mo

Rowan Zellers 92 Dec 11, 2022
Code for the CVPR2021 paper "Patch-NetVLAD: Multi-Scale Fusion of Locally-Global Descriptors for Place Recognition"

Patch-NetVLAD: Multi-Scale Fusion of Locally-Global Descriptors for Place Recognition This repository contains code for the CVPR2021 paper "Patch-NetV

QVPR 368 Jan 06, 2023
Code repository of the paper Neural circuit policies enabling auditable autonomy published in Nature Machine Intelligence

Neural Circuit Policies Enabling Auditable Autonomy Online access via SharedIt Neural Circuit Policies (NCPs) are designed sparse recurrent neural net

8 Jan 07, 2023