PyTorch implementations of neural network models for keyword spotting

Related tags

Deep Learninghonk
Overview

Honk: CNNs for Keyword Spotting

Honk is a PyTorch reimplementation of Google's TensorFlow convolutional neural networks for keyword spotting, which accompanies the recent release of their Speech Commands Dataset. For more details, please consult our writeup:

Honk is useful for building on-device speech recognition capabilities for interactive intelligent agents. Our code can be used to identify simple commands (e.g., "stop" and "go") and be adapted to detect custom "command triggers" (e.g., "Hey Siri!").

Check out this video for a demo of Honk in action!

Demo Application

Use the instructions below to run the demo application (shown in the above video) yourself!

Currently, PyTorch has official support for only Linux and OS X. Thus, Windows users will not be able to run this demo easily.

To deploy the demo, run the following commands:

  • If you do not have PyTorch, please see the website.
  • Install Python dependencies: pip install -r requirements.txt
  • Install GLUT (OpenGL Utility Toolkit) through your package manager (e.g. apt-get install freeglut3-dev)
  • Fetch the data and models: ./fetch_data.sh
  • Start the PyTorch server: python .
  • Run the demo: python utils/speech_demo.py

If you need to adjust options, like turning off CUDA, please edit config.json.

Additional notes for Mac OS X:

  • GLUT is already installed on Mac OS X, so that step isn't needed.
  • If you have issues installing pyaudio, this may be the issue.

Server

Setup and deployment

python . deploys the web service for identifying if audio contain the command word. By default, config.json is used for configuration, but that can be changed with --config=<file_name>. If the server is behind a firewall, one workflow is to create an SSH tunnel and use port forwarding with the port specified in config (default 16888).

In our honk-models repository, there are several pre-trained models for Caffe2 (ONNX) and PyTorch. The fetch_data.sh script fetches these models and extracts them to the model directory. You may specify which model and backend to use in the config file's model_path and backend, respectively. Specifically, backend can be either caffe2 or pytorch, depending on what format model_path is in. Note that, in order to run our ONNX models, the packages onnx and onnx_caffe2 must be present on your system; these are absent in requirements.txt.

Raspberry Pi (RPi) Infrastructure Setup

Unfortunately, getting the libraries to work on the RPi, especially librosa, isn't as straightforward as running a few commands. We outline our process, which may or may not work for you.

  1. Obtain an RPi, preferably an RPi 3 Model B running Raspbian. Specifically, we used this version of Raspbian Stretch.
  2. Install dependencies: sudo apt-get install -y protobuf-compiler libprotoc-dev python-numpy python-pyaudio python-scipy python-sklearn
  3. Install Protobuf: pip install protobuf
  4. Install ONNX without dependencies: pip install --no-deps onnx
  5. Follow the official instructions for installing Caffe2 on Raspbian. This process takes about two hours. You may need to add the caffe2 module path to the PYTHONPATH environment variable. For us, this was accomplished by export PYTHONPATH=$PYTHONPATH:/home/pi/caffe2/build
  6. Install the ONNX extension for Caffe2: pip install onnx-caffe2
  7. Install further requirements: pip install -r requirements_rpi.txt
  8. Install librosa: pip install --no-deps resampy librosa
  9. Try importing librosa: python -c "import librosa". It should throw an error regarding numba, since we haven't installed it.
  10. We haven't found a way to easily install numba on the RPi, so we need to remove it from resampy. For our setup, we needed to remove numba and @numba.jit from /home/pi/.local/lib/python2.7/site-packages/resampy/interpn.py
  11. All dependencies should now be installed. We should try deploying an ONNX model.
  12. Fetch the models and data: ./fetch_data.sh
  13. In config.json, change backend to caffe2 and model_path to model/google-speech-dataset-full.onnx.
  14. Deploy the server: python . If there are no errors, you have successfully deployed the model, accessible via port 16888 by default.
  15. Run the speech commands demo: python utils/speech_demo.py. You'll need a working microphone and speakers. If you're interacting with your RPi remotely, you can run the speech demo locally and specify the remote endpoint --server-endpoint=http://[RPi IP address]:16888.

Utilities

QA client

Unfortunately, the QA client has no support for the general public yet, since it requires a custom QA service. However, it can still be used to retarget the command keyword.

python client.py runs the QA client. You may retarget a keyword by doing python client.py --mode=retarget. Please note that text-to-speech may not work well on Linux distros; in this case, please supply IBM Watson credentials via --watson-username and --watson--password. You can view all the options by doing python client.py -h.

Training and evaluating the model

CNN models. python -m utils.train --type [train|eval] trains or evaluates the model. It expects all training examples to follow the same format as that of Speech Commands Dataset. The recommended workflow is to download the dataset and add custom keywords, since the dataset already contains many useful audio samples and background noise.

Residual models. We recommend the following hyperparameters for training any of our res{8,15,26}[-narrow] models on the Speech Commands Dataset:

python -m utils.train --wanted_words yes no up down left right on off stop go --dev_every 1 --n_labels 12 --n_epochs 26 --weight_decay 0.00001 --lr 0.1 0.01 0.001 --schedule 3000 6000 --model res{8,15,26}[-narrow]

For more information about our deep residual models, please see our paper:

There are command options available:

option input format default description
--audio_preprocess_type {MFCCs, PCEN} MFCCs type of audio preprocess to use
--batch_size [1, n) 100 the mini-batch size to use
--cache_size [0, inf) 32768 number of items in audio cache, consumes around 32 KB * n
--conv1_pool [1, inf) [1, inf) 2 2 the width and height of the pool filter
--conv1_size [1, inf) [1, inf) 10 4 the width and height of the conv filter
--conv1_stride [1, inf) [1, inf) 1 1 the width and length of the stride
--conv2_pool [1, inf) [1, inf) 1 1 the width and height of the pool filter
--conv2_size [1, inf) [1, inf) 10 4 the width and height of the conv filter
--conv2_stride [1, inf) [1, inf) 1 1 the width and length of the stride
--data_folder string /data/speech_dataset path to data
--dev_every [1, inf) 10 dev interval in terms of epochs
--dev_pct [0, 100] 10 percentage of total set to use for dev
--dropout_prob [0.0, 1.0) 0.5 the dropout rate to use
--gpu_no [-1, n] 1 the gpu to use
--group_speakers_by_id {true, false} true whether to group speakers across train/dev/test
--input_file string the path to the model to load
--input_length [1, inf) 16000 the length of the audio
--lr (0.0, inf) {0.1, 0.001} the learning rate to use
--type {train, eval} train the mode to use
--model string cnn-trad-pool2 one of cnn-trad-pool2, cnn-tstride-{2,4,8}, cnn-tpool{2,3}, cnn-one-fpool3, cnn-one-fstride{4,8}, res{8,15,26}[-narrow], cnn-trad-fpool3, cnn-one-stride1
--momentum [0.0, 1.0) 0.9 the momentum to use for SGD
--n_dct_filters [1, inf) 40 the number of DCT bases to use
--n_epochs [0, inf) 500 number of epochs
--n_feature_maps [1, inf) {19, 45} the number of feature maps to use for the residual architecture
--n_feature_maps1 [1, inf) 64 the number of feature maps for conv net 1
--n_feature_maps2 [1, inf) 64 the number of feature maps for conv net 2
--n_labels [1, n) 4 the number of labels to use
--n_layers [1, inf) {6, 13, 24} the number of convolution layers for the residual architecture
--n_mels [1, inf) 40 the number of Mel filters to use
--no_cuda switch false whether to use CUDA
--noise_prob [0.0, 1.0] 0.8 the probability of mixing with noise
--output_file string model/google-speech-dataset.pt the file to save the model to
--seed (inf, inf) 0 the seed to use
--silence_prob [0.0, 1.0] 0.1 the probability of picking silence
--test_pct [0, 100] 10 percentage of total set to use for testing
--timeshift_ms [0, inf) 100 time in milliseconds to shift the audio randomly
--train_pct [0, 100] 80 percentage of total set to use for training
--unknown_prob [0.0, 1.0] 0.1 the probability of picking an unknown word
--wanted_words string1 string2 ... stringn command random the desired target words

JavaScript-based Keyword Spotting

Honkling is a JavaScript implementation of Honk. With Honkling, it is possible to implement various web applications with in-browser keyword spotting functionality.

Keyword Spotting Data Generator

In order to improve the flexibility of Honk and Honkling, we provide a program that constructs a dataset from youtube videos. Details can be found in keyword_spotting_data_generator folder

Recording audio

You may do the following to record sequential audio and save to the same format as that of speech command dataset:

python -m utils.record

Input return to record, up arrow to undo, and "q" to finish. After one second of silence, recording automatically halts.

Several options are available:

--output-begin-index: Starting sequence number
--output-prefix: Prefix of the output audio sequence
--post-process: How the audio samples should be post-processed. One or more of "trim" and "discard_true".

Post-processing consists of trimming or discarding "useless" audio. Trimming is self-explanatory: the audio recordings are trimmed to the loudest window of x milliseconds, specified by --cutoff-ms. Discarding "useless" audio (discard_true) uses a pre-trained model to determine which samples are confusing, discarding correctly labeled ones. The pre-trained model and correct label are defined by --config and --correct-label, respectively.

For example, consider python -m utils.record --post-process trim discard_true --correct-label no --config config.json. In this case, the utility records a sequence of speech snippets, trims them to one second, and finally discards those not labeled "no" by the model in config.json.

Listening to sound level

python manage_audio.py listen

This assists in setting sane values for --min-sound-lvl for recording.

Generating contrastive examples

python manage_audio.py generate-contrastive --directory [directory] generates contrastive examples from all .wav files in [directory] using phonetic segmentation.

Trimming audio

Speech command dataset contains one-second-long snippets of audio.

python manage_audio.py trim --directory [directory] trims to the loudest one-second for all .wav files in [directory]. The careful user should manually check all audio samples using an audio editor like Audacity.

Owner
Castorini
Deep learning for natural language processing and information retrieval at the University of Waterloo
Castorini
MVFNet: Multi-View Fusion Network for Efficient Video Recognition (AAAI 2021)

MVFNet: Multi-View Fusion Network for Efficient Video Recognition (AAAI 2021) Overview We release the code of the MVFNet (Multi-View Fusion Network).

2 Jan 29, 2022
A Shading-Guided Generative Implicit Model for Shape-Accurate 3D-Aware Image Synthesis

A Shading-Guided Generative Implicit Model for Shape-Accurate 3D-Aware Image Synthesis Figure: Shape-Accurate 3D-Aware Image Synthesis. A Shading-Guid

Xingang Pan 115 Dec 18, 2022
Yolov5 deepsort inference,使用YOLOv5+Deepsort实现车辆行人追踪和计数,代码封装成一个Detector类,更容易嵌入到自己的项目中

使用YOLOv5+Deepsort实现车辆行人追踪和计数,代码封装成一个Detector类,更容易嵌入到自己的项目中。

813 Dec 31, 2022
Differentiable molecular simulation of proteins with a coarse-grained potential

Differentiable molecular simulation of proteins with a coarse-grained potential This repository contains the learned potential, simulation scripts and

UCL Bioinformatics Group 44 Dec 10, 2022
Code and project page for ICCV 2021 paper "DisUnknown: Distilling Unknown Factors for Disentanglement Learning"

DisUnknown: Distilling Unknown Factors for Disentanglement Learning See introduction on our project page Requirements PyTorch = 1.8.0 torch.linalg.ei

Sitao Xiang 24 May 16, 2022
Vis2Mesh: Efficient Mesh Reconstruction from Unstructured Point Clouds of Large Scenes with Learned Virtual View Visibility ICCV2021

Vis2Mesh This is the offical repository of the paper: Vis2Mesh: Efficient Mesh Reconstruction from Unstructured Point Clouds of Large Scenes with Lear

71 Dec 25, 2022
Transformers are Graph Neural Networks!

🚀 Gated Graph Transformers Gated Graph Transformers for graph-level property prediction, i.e. graph classification and regression. Associated article

Chaitanya Joshi 46 Jun 30, 2022
Crowd-Kit is a powerful Python library that implements commonly-used aggregation methods for crowdsourced annotation and offers the relevant metrics and datasets

Crowd-Kit: Computational Quality Control for Crowdsourcing Documentation Crowd-Kit is a powerful Python library that implements commonly-used aggregat

Toloka 125 Dec 30, 2022
《LXMERT: Learning Cross-Modality Encoder Representations from Transformers》(EMNLP 2020)

The Most Important Thing. Our code is developed based on: LXMERT: Learning Cross-Modality Encoder Representations from Transformers

53 Dec 16, 2022
MixRNet(Using mixup as regularization and tuning hyper-parameters for ResNets)

MixRNet(Using mixup as regularization and tuning hyper-parameters for ResNets) Using mixup data augmentation as reguliraztion and tuning the hyper par

Bhanu 2 Jan 16, 2022
Ensemble Learning Priors Driven Deep Unfolding for Scalable Snapshot Compressive Imaging [PyTorch]

Ensemble Learning Priors Driven Deep Unfolding for Scalable Snapshot Compressive Imaging [PyTorch] Abstract Snapshot compressive imaging (SCI) can rec

integirty 6 Nov 01, 2022
Title: Heart-Failure-Classification

This Notebook is based off an open source dataset available on where I have created models to classify patients who can potentially witness heart failure on the basis of various parameters. The best

Akarsh Singh 2 Sep 13, 2022
Official Pytorch Implementation of Adversarial Instance Augmentation for Building Change Detection in Remote Sensing Images.

IAug_CDNet Official Implementation of Adversarial Instance Augmentation for Building Change Detection in Remote Sensing Images. Overview We propose a

53 Dec 02, 2022
Generic U-Net Tensorflow implementation for image segmentation

Tensorflow Unet Warning This project is discontinued in favour of a Tensorflow 2 compatible reimplementation of this project found under https://githu

Joel Akeret 1.8k Dec 10, 2022
Code for the paper A Theoretical Analysis of the Repetition Problem in Text Generation

A Theoretical Analysis of the Repetition Problem in Text Generation This repository share the code for the paper "A Theoretical Analysis of the Repeti

Zihao Fu 37 Nov 21, 2022
🥇Samsung AI Challenge 2021 1등 솔루션입니다🥇

MoT - Molecular Transformer Large-scale Pretraining for Molecular Property Prediction Samsung AI Challenge for Scientific Discovery This repository is

Jungwoo Park 44 Dec 03, 2022
Checkout some cool self-projects you can try your hands on to curb your boredom this December!

SoC-Winter Checkout some cool self-projects you can try your hands on to curb your boredom this December! These are short projects that you can do you

Web and Coding Club, IIT Bombay 29 Nov 08, 2022
VIL-100: A New Dataset and A Baseline Model for Video Instance Lane Detection (ICCV 2021)

Preparation Please see dataset/README.md to get more details about our datasets-VIL100 Please see INSTALL.md to install environment and evaluation too

82 Dec 15, 2022
[CVPR 2021] "Multimodal Motion Prediction with Stacked Transformers": official code implementation and project page.

mmTransformer Introduction This repo is official implementation for mmTransformer in pytorch. Currently, the core code of mmTransformer is implemented

DeciForce: Crossroads of Machine Perception and Autonomy 232 Dec 31, 2022
Self-Supervised Speech Pre-training and Representation Learning Toolkit.

What's New Sep 2021: We host a challenge in AAAI workshop: The 2nd Self-supervised Learning for Audio and Speech Processing! See SUPERB official site

s3prl 1.6k Jan 08, 2023