Approaches to modeling terrain and maps in python

Overview

topography 🌎

Python 3.8 Build Status Language grade: Python Total alerts

Contains different approaches to modeling terrain and topographic-style maps in python

image

Features

Inverse Distance Weighting (IDW)

A given point P(x, y) is determined by the values of its neighbors, inversely proportional to the distance of each neighbor.

P is more heavily influenced by nearer points via a weighting function w(x, y).

Steps

The value of P(x, y) is determined only by the closest raw data point.

This approach works best to get a "feel" for larger datasets. With few input points, the resulting map has little detail.

In the case of multiple equidistant points being closest, point values are stored, and averaged.

Bilinear

in progress 👷 🛠️

Bicubic

in progress 👷 🛠️

Install

pip install topography

Requirements

  • numpy
  • matplotlib

see the requirements.txt

Example

from topography.Map import Map
from topography.utils.io import getPointValuesFromCsv

# # make map from noise data
# noiseMaker = Noise((0, 50), (0, 50))
# noiseData = noiseMaker.getRandom(scaleFactor=1)
# M = Map(noiseData)

# make map from recorded data
rawData = getPointValuesFromCsv("tests/data/20x20.csv")
M = Map(rawData)

# # Display the inputted raw data values
M.showRawPointValues()

# interpolate the Map
M.idw(showWhenDone=True)

# Display the interpolated data values
M.showFilledPointValues()

# Save the data to a .csv file
# optionally, write to file as a matrix
# default is x, y, z
M.writeLastToCsv("idw_20x20", writeAsMatrix=True)
Comments
  • NN - Improvements and Possible Design Changes

    NN - Improvements and Possible Design Changes

    NN Improvements and Design Changes

    Consider breaking up the current implementation of NN

    • [x] current NN ➡️ Map.steps()
    • [ ] new NN via voroni tesselation ➡️ Map.voroni() or Map.nn()

    image

    feature 
    opened by XDwightsBeetsX 1
  • Noise Generation

    Noise Generation

    Add Noise Generators

    This will be nice for quickly making cool topography maps

    start with random noise, but ideas for later...

    feature 
    opened by XDwightsBeetsX 1
  • allows for user to input map size

    allows for user to input map size

    Custom Map Dimensions, closes #5

    Can now customize views of the Map by specifying a custom Map(rawData, xRange=(lower, upper), yRange=(lower, upper))

    This does not impact the determination of points by interpolation, but does give a "sliced" view of the Map

    feature 
    opened by XDwightsBeetsX 1
  • Add Surface Plotting

    Add Surface Plotting

    New Surface Plot

    • In addition to the heatmap-style plot, add a surface representation plot of the Map
    • It should be displayed alongside the 2D Heatmap in a horizontal subplot
    • This may require some refactoring of the Map PointValue storage so that it can be used as a series of X, Y, Z lists
    • See this documentation on matplotlib

    Something Like This:

    | image | image | | :-: | :-: |

    feature 
    opened by XDwightsBeetsX 1
  • IDW Improvement - Neighborhooding

    IDW Improvement - Neighborhooding

    Add Neighborhooding to IDW

    • only apply IDW to a minimum number of nearby neighbors
      • the point of interest is more likely to be similar to nearby points
    feature 
    opened by XDwightsBeetsX 0
  • Added NN Interpolation

    Added NN Interpolation

    New NN Interpolation

    This is going to work better with larger data sets to get a "feel" for the Map.

    • Should add some noise generator to see how this looks with larger data sets.
    • Also add some docs, mentioning above
    • can add sophistication by grouping within a nearby region
    feature 
    opened by XDwightsBeetsX 0
  • Allow User to Input Map Size

    Allow User to Input Map Size

    Currently

    The size of the Map is determined by the user input RawData:

    width = self.xMax - self.xMin + 1
    height = self.yMax - self.yMin + 1
    

    Desired

    This should be changed to allow for the Instantiation of a Map's size to be set in the constructor.

    • Something like Map(rawData, xRange=(lower, upper), yRange=(lower, upper)) where lower and upper are inclusive
    • This change will have to be accounted for when finding max values
    • Undecided on if interpolation approaches should still consider these points
    feature 
    opened by XDwightsBeetsX 0
  • Bicubic Interpolation

    Bicubic Interpolation

    Add Bicubic Interpolation Scheme

    • [ ] in interpolaion.py add bicubic(thisPt, rawPts)
    • [ ] in tests/test_interpolate add test_bicubic.py
    • [ ] in tests/visual/1d add test_visual_bicubic.py
    • [ ] in Map.py add Map.bicubic(showWhenDone=True)

    image

    also see wikipedia

    feature tests 
    opened by XDwightsBeetsX 0
  • Bilinear Interpolation

    Bilinear Interpolation

    Add Bilinear Interpolation Scheme

    • [ ] in interpolaion.py add bilinear(thisPt, rawPts)
    • [ ] in tests/test_interpolate add test_bilinear.py
    • [ ] in tests/visual/1d add test_visual_bilinear.py
    • [ ] in Map.py add Map.bilinear(showWhenDone=True)

    image

    also see wikipedia

    feature tests 
    opened by XDwightsBeetsX 3
Releases(1.0.0)
  • 1.0.0(Jun 27, 2021)

    check out the new topography package on pypi 🌎

    This package provides some visualization and interpolation for topography data using the Map data structure

    • read data from file into PointValues using topography.utils.io.getPointValuesFromCsv(filename)
    • make a map with M = Map(rawData) and perform some interpolation like Map.idw(showWhenDone=True)
    • write the results to a data file with M.writeLastToCsv("cool_idw_interpolation", writeAsMatrix=True)

    Current interpolation schemes:

    • inverse distance weighting
    • step function
    Source code(tar.gz)
    Source code(zip)
Owner
John Gutierrez
Texas A&M MEEN '22. CS minor. Texas Water Safari Finisher '19 '21
John Gutierrez
Keras Image Embeddings using Contrastive Loss

Keras-Image-Embeddings-using-Contrastive-Loss Image to Embedding projection in vector space. Implementation in keras and tensorflow for custom data. B

Shravan Anand K 5 Mar 21, 2022
A basic duplicate image detection service using perceptual image hash functions and nearest neighbor search, implemented using faiss, fastapi, and imagehash

Duplicate Image Detection Getting Started Install dependencies pip install -r requirements.txt Run service python main.py Testing Test with pytest How

Matthew Podolak 21 Nov 11, 2022
Deep metric learning methods implemented in Chainer

Deep Metric Learning Implementation of several methods for deep metric learning in Chainer v4.2.0. Proxy-NCA: No Fuss Distance Metric Learning using P

ronekko 156 Nov 28, 2022
Official repository of "Investigating Tradeoffs in Real-World Video Super-Resolution"

RealBasicVSR [Paper] This is the official repository of "Investigating Tradeoffs in Real-World Video Super-Resolution, arXiv". This repository contain

Kelvin C.K. Chan 566 Dec 28, 2022
Weakly Supervised Learning of Rigid 3D Scene Flow

Weakly Supervised Learning of Rigid 3D Scene Flow This repository provides code and data to train and evaluate a weakly supervised method for rigid 3D

Zan Gojcic 124 Dec 27, 2022
PyTorch implementation of the Pose Residual Network (PRN)

Pose Residual Network This repository contains a PyTorch implementation of the Pose Residual Network (PRN) presented in our ECCV 2018 paper: Muhammed

Salih Karagoz 289 Nov 28, 2022
[ICCV'21] Learning Conditional Knowledge Distillation for Degraded-Reference Image Quality Assessment

CKDN The official implementation of the ICCV2021 paper "Learning Conditional Knowledge Distillation for Degraded-Reference Image Quality Assessment" O

Multimedia Research 50 Dec 13, 2022
Learning Spatio-Temporal Transformer for Visual Tracking

STARK The official implementation of the paper Learning Spatio-Temporal Transformer for Visual Tracking Hiring research interns for visual transformer

Multimedia Research 484 Dec 29, 2022
GRF: Learning a General Radiance Field for 3D Representation and Rendering

GRF: Learning a General Radiance Field for 3D Representation and Rendering [Paper] [Video] GRF: Learning a General Radiance Field for 3D Representatio

Alex Trevithick 243 Dec 29, 2022
Action Segmentation Evaluation

Reference Action Segmentation Evaluation Code This repository contains the reference code for action segmentation evaluation. If you have a bug-fix/im

5 May 22, 2022
An official reimplementation of the method described in the INTERSPEECH 2021 paper - Speech Resynthesis from Discrete Disentangled Self-Supervised Representations.

Speech Resynthesis from Discrete Disentangled Self-Supervised Representations Implementation of the method described in the Speech Resynthesis from Di

Facebook Research 253 Jan 06, 2023
Converts given image (png, jpg, etc) to amogus gif.

Image to Amogus Converter Converts given image (.png, .jpg, etc) to an amogus gif! Usage Place image in the /target/ folder (or anywhere realistically

Hank Magan 1 Nov 24, 2021
Code in conjunction with the publication 'Contrastive Representation Learning for Hand Shape Estimation'

HanCo Dataset & Contrastive Representation Learning for Hand Shape Estimation Code in conjunction with the publication: Contrastive Representation Lea

Computer Vision Group, Albert-Ludwigs-Universität Freiburg 38 Dec 13, 2022
This is a repository for a No-Code object detection inference API using the OpenVINO. It's supported on both Windows and Linux Operating systems.

OpenVINO Inference API This is a repository for an object detection inference API using the OpenVINO. It's supported on both Windows and Linux Operati

BMW TechOffice MUNICH 68 Nov 24, 2022
Notes, programming assignments and quizzes from all courses within the Coursera Deep Learning specialization offered by deeplearning.ai

Coursera-deep-learning-specialization - Notes, programming assignments and quizzes from all courses within the Coursera Deep Learning specialization offered by deeplearning.ai: (i) Neural Networks an

Aman Chadha 1.7k Jan 08, 2023
Mmdetection3d Noted - MMDetection3D is an open source object detection toolbox based on PyTorch

MMDetection3D is an open source object detection toolbox based on PyTorch

Jiangjingwen 13 Jan 06, 2023
FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection

FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection arXi

59 Nov 29, 2022
DFM: A Performance Baseline for Deep Feature Matching

DFM: A Performance Baseline for Deep Feature Matching Python (Pytorch) and Matlab (MatConvNet) implementations of our paper DFM: A Performance Baselin

143 Jan 02, 2023
Unofficial implementation of the paper: PonderNet: Learning to Ponder in TensorFlow

PonderNet-TensorFlow This is an Unofficial Implementation of the paper: PonderNet: Learning to Ponder in TensorFlow. Official PyTorch Implementation:

1 Oct 23, 2022
UNION: An Unreferenced Metric for Evaluating Open-ended Story Generation

UNION Automatic Evaluation Metric described in the paper UNION: An UNreferenced MetrIc for Evaluating Open-eNded Story Generation (EMNLP 2020). Please

50 Dec 30, 2022