Approaches to modeling terrain and maps in python

Overview

topography 🌎

Python 3.8 Build Status Language grade: Python Total alerts

Contains different approaches to modeling terrain and topographic-style maps in python

image

Features

Inverse Distance Weighting (IDW)

A given point P(x, y) is determined by the values of its neighbors, inversely proportional to the distance of each neighbor.

P is more heavily influenced by nearer points via a weighting function w(x, y).

Steps

The value of P(x, y) is determined only by the closest raw data point.

This approach works best to get a "feel" for larger datasets. With few input points, the resulting map has little detail.

In the case of multiple equidistant points being closest, point values are stored, and averaged.

Bilinear

in progress 👷 🛠️

Bicubic

in progress 👷 🛠️

Install

pip install topography

Requirements

  • numpy
  • matplotlib

see the requirements.txt

Example

from topography.Map import Map
from topography.utils.io import getPointValuesFromCsv

# # make map from noise data
# noiseMaker = Noise((0, 50), (0, 50))
# noiseData = noiseMaker.getRandom(scaleFactor=1)
# M = Map(noiseData)

# make map from recorded data
rawData = getPointValuesFromCsv("tests/data/20x20.csv")
M = Map(rawData)

# # Display the inputted raw data values
M.showRawPointValues()

# interpolate the Map
M.idw(showWhenDone=True)

# Display the interpolated data values
M.showFilledPointValues()

# Save the data to a .csv file
# optionally, write to file as a matrix
# default is x, y, z
M.writeLastToCsv("idw_20x20", writeAsMatrix=True)
Comments
  • NN - Improvements and Possible Design Changes

    NN - Improvements and Possible Design Changes

    NN Improvements and Design Changes

    Consider breaking up the current implementation of NN

    • [x] current NN ➡️ Map.steps()
    • [ ] new NN via voroni tesselation ➡️ Map.voroni() or Map.nn()

    image

    feature 
    opened by XDwightsBeetsX 1
  • Noise Generation

    Noise Generation

    Add Noise Generators

    This will be nice for quickly making cool topography maps

    start with random noise, but ideas for later...

    feature 
    opened by XDwightsBeetsX 1
  • allows for user to input map size

    allows for user to input map size

    Custom Map Dimensions, closes #5

    Can now customize views of the Map by specifying a custom Map(rawData, xRange=(lower, upper), yRange=(lower, upper))

    This does not impact the determination of points by interpolation, but does give a "sliced" view of the Map

    feature 
    opened by XDwightsBeetsX 1
  • Add Surface Plotting

    Add Surface Plotting

    New Surface Plot

    • In addition to the heatmap-style plot, add a surface representation plot of the Map
    • It should be displayed alongside the 2D Heatmap in a horizontal subplot
    • This may require some refactoring of the Map PointValue storage so that it can be used as a series of X, Y, Z lists
    • See this documentation on matplotlib

    Something Like This:

    | image | image | | :-: | :-: |

    feature 
    opened by XDwightsBeetsX 1
  • IDW Improvement - Neighborhooding

    IDW Improvement - Neighborhooding

    Add Neighborhooding to IDW

    • only apply IDW to a minimum number of nearby neighbors
      • the point of interest is more likely to be similar to nearby points
    feature 
    opened by XDwightsBeetsX 0
  • Added NN Interpolation

    Added NN Interpolation

    New NN Interpolation

    This is going to work better with larger data sets to get a "feel" for the Map.

    • Should add some noise generator to see how this looks with larger data sets.
    • Also add some docs, mentioning above
    • can add sophistication by grouping within a nearby region
    feature 
    opened by XDwightsBeetsX 0
  • Allow User to Input Map Size

    Allow User to Input Map Size

    Currently

    The size of the Map is determined by the user input RawData:

    width = self.xMax - self.xMin + 1
    height = self.yMax - self.yMin + 1
    

    Desired

    This should be changed to allow for the Instantiation of a Map's size to be set in the constructor.

    • Something like Map(rawData, xRange=(lower, upper), yRange=(lower, upper)) where lower and upper are inclusive
    • This change will have to be accounted for when finding max values
    • Undecided on if interpolation approaches should still consider these points
    feature 
    opened by XDwightsBeetsX 0
  • Bicubic Interpolation

    Bicubic Interpolation

    Add Bicubic Interpolation Scheme

    • [ ] in interpolaion.py add bicubic(thisPt, rawPts)
    • [ ] in tests/test_interpolate add test_bicubic.py
    • [ ] in tests/visual/1d add test_visual_bicubic.py
    • [ ] in Map.py add Map.bicubic(showWhenDone=True)

    image

    also see wikipedia

    feature tests 
    opened by XDwightsBeetsX 0
  • Bilinear Interpolation

    Bilinear Interpolation

    Add Bilinear Interpolation Scheme

    • [ ] in interpolaion.py add bilinear(thisPt, rawPts)
    • [ ] in tests/test_interpolate add test_bilinear.py
    • [ ] in tests/visual/1d add test_visual_bilinear.py
    • [ ] in Map.py add Map.bilinear(showWhenDone=True)

    image

    also see wikipedia

    feature tests 
    opened by XDwightsBeetsX 3
Releases(1.0.0)
  • 1.0.0(Jun 27, 2021)

    check out the new topography package on pypi 🌎

    This package provides some visualization and interpolation for topography data using the Map data structure

    • read data from file into PointValues using topography.utils.io.getPointValuesFromCsv(filename)
    • make a map with M = Map(rawData) and perform some interpolation like Map.idw(showWhenDone=True)
    • write the results to a data file with M.writeLastToCsv("cool_idw_interpolation", writeAsMatrix=True)

    Current interpolation schemes:

    • inverse distance weighting
    • step function
    Source code(tar.gz)
    Source code(zip)
Owner
John Gutierrez
Texas A&M MEEN '22. CS minor. Texas Water Safari Finisher '19 '21
John Gutierrez
Code repository for "Reducing Underflow in Mixed Precision Training by Gradient Scaling" presented at IJCAI '20

Reducing Underflow in Mixed Precision Training by Gradient Scaling This project implements the gradient scaling method to improve the performance of m

Ruizhe Zhao 5 Apr 14, 2022
Implementation of Cross Transformer for spatially-aware few-shot transfer, in Pytorch

Cross Transformers - Pytorch (wip) Implementation of Cross Transformer for spatially-aware few-shot transfer, in Pytorch Install $ pip install cross-t

Phil Wang 40 Dec 22, 2022
TensorFlow implementation of Deep Reinforcement Learning papers

Deep Reinforcement Learning in TensorFlow TensorFlow implementation of Deep Reinforcement Learning papers. This implementation contains: [1] Playing A

Taehoon Kim 1.6k Jan 03, 2023
Dense Passage Retriever - is a set of tools and models for open domain Q&A task.

Dense Passage Retrieval Dense Passage Retrieval (DPR) - is a set of tools and models for state-of-the-art open-domain Q&A research. It is based on the

Meta Research 1.1k Jan 03, 2023
Memory Defense: More Robust Classificationvia a Memory-Masking Autoencoder

Memory Defense: More Robust Classificationvia a Memory-Masking Autoencoder Authors: - Eashan Adhikarla - Dan Luo - Dr. Brian D. Davison Abstract Many

Eashan Adhikarla 4 Dec 25, 2022
[CVPR 2021] Generative Hierarchical Features from Synthesizing Images

[CVPR 2021] Generative Hierarchical Features from Synthesizing Images

GenForce: May Generative Force Be with You 148 Dec 09, 2022
Simplified interface for TensorFlow (mimicking Scikit Learn) for Deep Learning

SkFlow has been moved to Tensorflow. SkFlow has been moved to http://github.com/tensorflow/tensorflow into contrib folder specifically located here. T

3.2k Dec 29, 2022
Auxiliary data to the CHIIR paper Searching to Learn with Instructional Scaffolding

Searching to Learn with Instructional Scaffolding This is the data and analysis code for the paper "Searching to Learn with Instructional Scaffolding"

Arthur Câmara 2 Mar 02, 2022
A spatial genome aligner for analyzing multiplexed DNA-FISH imaging data.

jie jie is a spatial genome aligner. This package parses true chromatin imaging signal from noise by aligning signals to a reference DNA polymer model

Bojing Jia 9 Sep 29, 2022
PyTorch code for Composing Partial Differential Equations with Physics-Aware Neural Networks

FInite volume Neural Network (FINN) This repository contains the PyTorch code for models, training, and testing, and Python code for data generation t

Cognitive Modeling 20 Dec 18, 2022
Indonesian Car License Plate Character Recognition using Tensorflow, Keras and OpenCV.

Monopol Indonesian Car License Plate (Indonesia Mobil Nomor Polisi) Character Recognition using Tensorflow, Keras and OpenCV. Background This applicat

Jayaku Briliantio 3 Apr 07, 2022
MT-GAN-PyTorch - PyTorch Implementation of Learning to Transfer: Unsupervised Domain Translation via Meta-Learning

MT-GAN-PyTorch PyTorch Implementation of AAAI-2020 Paper "Learning to Transfer: Unsupervised Domain Translation via Meta-Learning" Dependency: Python

29 Oct 19, 2022
RANZCR-CLiP 7th Place Solution

RANZCR-CLiP 7th Place Solution This repository is WIP. (18 Mar 2021) Installation git clone https://github.com/analokmaus/kaggle-ranzcr-clip-public.gi

Hiroshechka Y 21 Oct 22, 2022
Genetic Programming in Python, with a scikit-learn inspired API

Welcome to gplearn! gplearn implements Genetic Programming in Python, with a scikit-learn inspired and compatible API. While Genetic Programming (GP)

Trevor Stephens 1.3k Jan 03, 2023
Convnext-tf - Unofficial tensorflow keras implementation of ConvNeXt

ConvNeXt Tensorflow This is unofficial tensorflow keras implementation of ConvNe

29 Oct 06, 2022
This repo is a C++ version of yolov5_deepsort_tensorrt. Packing all C++ programs into .so files, using Python script to call C++ programs further.

yolov5_deepsort_tensorrt_cpp Introduction This repo is a C++ version of yolov5_deepsort_tensorrt. And packing all C++ programs into .so files, using P

41 Dec 27, 2022
An implementation of Geoffrey Hinton's paper "How to represent part-whole hierarchies in a neural network" in Pytorch.

GLOM An implementation of Geoffrey Hinton's paper "How to represent part-whole hierarchies in a neural network" for MNIST Dataset. To understand this

50 Oct 19, 2022
SAGE: Sensitivity-guided Adaptive Learning Rate for Transformers

SAGE: Sensitivity-guided Adaptive Learning Rate for Transformers This repo contains our codes for the paper "No Parameters Left Behind: Sensitivity Gu

Chen Liang 23 Nov 07, 2022
Pytorch implementation of MaskFlownet

MaskFlownet-Pytorch Unofficial PyTorch implementation of MaskFlownet (https://github.com/microsoft/MaskFlownet). Tested with: PyTorch 1.5.0 CUDA 10.1

Daniele Cattaneo 84 Nov 02, 2022
Repository sharing code and the model for the paper "Rescoring Sequence-to-Sequence Models for Text Line Recognition with CTC-Prefixes"

Rescoring Sequence-to-Sequence Models for Text Line Recognition with CTC-Prefixes Setup virtualenv -p python3 venv source venv/bin/activate pip instal

Planet AI GmbH 9 May 20, 2022