This is the code for our paper "Iconary: A Pictionary-Based Game for Testing Multimodal Communication with Drawings and Text"

Related tags

Deep Learningiconary
Overview

Iconary

This is the code for our paper "Iconary: A Pictionary-Based Game for Testing Multimodal Communication with Drawings and Text". It includes the datasets, models we trained, and our training/evaluations scripts.

Install

Install python >= 3.6 and pytorch >= 1.7.0. This project has been tested with torch==1.7.1, but later versions might work.

Then install the extra requirements:

pip install -r requirements

Finally add the top-level directory to PYTHONPATH:

cd iconary
export PYTHONPATH=`pwd`

Data

Datasets will be downloaded and cached automatically as needed, file_paths.py shows where the files will be stored. By defaults, datasets are stored in ~/data/iconary.

If you want to download the data manually, the dataest can be downloaded here:

We release the complete datasets without held-out labels since computing the automatic metrics for both the Guesser and Drawer requires the entire game to be known. Models should only be trained on the train set and researchers should avoid looking/evaluating on the test sets as much as possible.

Models

We release the following models on S3:

Guesser:

  • TGuesser: s3://ai2-vision-iconary/public-models/tguesser-3b/
  • w/T5-Large: s3://ai2-vision-iconary/public-models/tguesser-large/
  • w/T5-Base: s3://ai2-vision-iconary/public-models/tguesser-base/

Drawer:

  • TDrawer: s3://ai2-vision-iconary/public-models/tdrawer-large/
  • w/T5-Base: s3://ai2-vision-iconary/public-models/tdrawer-base/

To use these models, download the entire directory. For example:

mkdir -p models
aws s3 cp --recursive s3://ai2-vision-iconary/public-models/tguesser-base models/tguesser-base

Train

Guesser

Train TGuesser with:

python iconary/experiments/train_guesser.py --pretrained_model t5-base --output_dir models/tguesser-base

Note our full model use --pretrained_model t5-b3, but that requries a >16GB RAM GPU to run.

Drawing

Train TDrawer with:

python iconary/experiments/train_drawer.py --pretrained_model t5-base --output_dir models/tdrawer-base --grad_accumulation 2

Note our full model use --pretrained_model t5-large, but that requires a >16GB RAM GPU to run.

Automatic Evaluation

These scripts generate drawings/guesses for games in human/human games, and computes automatic metrics from those drawings/guesses. Note our generation scripts will use all GPUs that they can find with torch.cuda.device_count(), to control where it runs use the CUDA_VISIBLE_DEVICES environment variable.

Guesser

To compute automatic metrics for the Guesser, first generate guesses as:

python iconary/experiments/generate_guesses.py path/to/model --dataset ood-valid --output_file guesses.json --unk_boost 2.0

Note that most of our evaluations are done using --unk_boost 2.0 which implements rare-word boosting.

This script will report our automatic metrics, but they can also be re-computed using:

python iconary/experiments/eval_guesses.py guesses.json

Drawer

Generate drawings with:

python iconary/experiments/generate_drawings.py path/to/model --dataset ood-valid --output_file drawings.json

This script will report our automatic metrics, but they can also be re-computed using:

python iconary/experiments/eval_drawings.py drawings.json

Human/AI Evaluation

Our code for running human/AI games is not currently released, if you are interested in running your own trials contact us and we can help you follow our human/AI setup.

Cite

If you use this work, please cite:

"Iconary: A Pictionary-Based Game for Testing MultimodalCommunication with Drawings and Text". Christopher Clark, Jordi Salvador, Dustin Schwenk, Derrick Bonafilia, Mark Yatskar, Eric Kolve, Alvaro Herrasti, Jonghyun Choi, Sachin Mehta, Sam Skjonsberg, Carissa Schoenick, Aaron Sarnat, Hannaneh Hajishirzi, Aniruddha Kembhavi, Oren Etzioni, Ali Farhadi. In EMNLP 2021.

Perturb-and-max-product: Sampling and learning in discrete energy-based models

Perturb-and-max-product: Sampling and learning in discrete energy-based models This repo contains code for reproducing the results in the paper Pertur

Vicarious 2 Mar 14, 2022
Source code for Acorn, the precision farming rover by Twisted Fields

Acorn precision farming rover This is the software repository for Acorn, the precision farming rover by Twisted Fields. For more information see twist

Twisted Fields 198 Jan 02, 2023
Relative Human dataset, CVPR 2022

Relative Human (RH) contains multi-person in-the-wild RGB images with rich human annotations, including: Depth layers (DLs): relative depth relationsh

Yu Sun 112 Dec 02, 2022
A list of awesome PyTorch scholarship articles, guides, blogs, courses and other resources.

Awesome PyTorch Scholarship Resources A collection of awesome PyTorch and Python learning resources. Contributions are always welcome! Course Informat

Arnas Gečas 302 Dec 03, 2022
Official Implementation of Neural Splines

Neural Splines: Fitting 3D Surfaces with Inifinitely-Wide Neural Networks This repository contains the official implementation of the CVPR 2021 (Oral)

Francis Williams 56 Nov 29, 2022
Multivariate Time Series Forecasting with efficient Transformers. Code for the paper "Long-Range Transformers for Dynamic Spatiotemporal Forecasting."

Spacetimeformer Multivariate Forecasting This repository contains the code for the paper, "Long-Range Transformers for Dynamic Spatiotemporal Forecast

QData 440 Jan 02, 2023
DiscoNet: Learning Distilled Collaboration Graph for Multi-Agent Perception [NeurIPS 2021]

DiscoNet: Learning Distilled Collaboration Graph for Multi-Agent Perception [NeurIPS 2021] Yiming Li, Shunli Ren, Pengxiang Wu, Siheng Chen, Chen Feng

Automation and Intelligence for Civil Engineering (AI4CE) Lab @ NYU 98 Dec 21, 2022
Avalanche RL: an End-to-End Library for Continual Reinforcement Learning

Avalanche RL: an End-to-End Library for Continual Reinforcement Learning Avalanche Website | Getting Started | Examples | Tutorial | API Doc | Paper |

ContinualAI 43 Dec 24, 2022
Multi-layer convolutional LSTM with Pytorch

Convolution_LSTM_pytorch Thanks for your attention. I haven't got time to maintain this repo for a long time. I recommend this repo which provides an

Zijie Zhuang 733 Dec 30, 2022
Data-driven reduced order modeling for nonlinear dynamical systems

SSMLearn Data-driven Reduced Order Models for Nonlinear Dynamical Systems This package perform data-driven identification of reduced order model based

Haller Group, Nonlinear Dynamics 27 Dec 13, 2022
This project provides a stock market environment using OpenGym with Deep Q-learning and Policy Gradient.

Stock Trading Market OpenAI Gym Environment with Deep Reinforcement Learning using Keras Overview This project provides a general environment for stoc

Kim, Ki Hyun 769 Dec 25, 2022
[NeurIPS 2021] Better Safe Than Sorry: Preventing Delusive Adversaries with Adversarial Training

Better Safe Than Sorry: Preventing Delusive Adversaries with Adversarial Training Code for NeurIPS 2021 paper "Better Safe Than Sorry: Preventing Delu

Lue Tao 29 Sep 20, 2022
TransZero++: Cross Attribute-guided Transformer for Zero-Shot Learning

TransZero++ This repository contains the testing code for the paper "TransZero++: Cross Attribute-guided Transformer for Zero-Shot Learning" submitted

Shiming Chen 6 Aug 16, 2022
Gin provides a lightweight configuration framework for Python

Gin Config Authors: Dan Holtmann-Rice, Sergio Guadarrama, Nathan Silberman Contributors: Oscar Ramirez, Marek Fiser Gin provides a lightweight configu

Google 1.7k Jan 03, 2023
Malware Analysis Neural Network project.

MalanaNeuralNetwork Description Malware Analysis Neural Network project. Table of Contents Getting Started Requirements Installation Clone Set-Up VENV

2 Nov 13, 2021
Pytorch implementation for "Distribution-Balanced Loss for Multi-Label Classification in Long-Tailed Datasets" (ECCV 2020 Spotlight)

Distribution-Balanced Loss [Paper] The implementation of our paper Distribution-Balanced Loss for Multi-Label Classification in Long-Tailed Datasets (

Tong WU 304 Dec 22, 2022
The code for replicating the experiments from the LFI in SSMs with Unknown Dynamics paper.

Likelihood-Free Inference in State-Space Models with Unknown Dynamics This package contains the codes required to run the experiments in the paper. Th

Alex Aushev 0 Dec 27, 2021
mbrl-lib is a toolbox for facilitating development of Model-Based Reinforcement Learning algorithms.

mbrl-lib is a toolbox for facilitating development of Model-Based Reinforcement Learning algorithms. It provides easily interchangeable modeling and planning components, and a set of utility function

Facebook Research 724 Jan 04, 2023
LinkNet - This repository contains our Torch7 implementation of the network developed by us at e-Lab.

LinkNet This repository contains our Torch7 implementation of the network developed by us at e-Lab. You can go to our blogpost or read the article Lin

e-Lab 158 Nov 11, 2022
This is the winning solution of the Endocv-2021 grand challange.

Endocv2021-winner [Paper] This is the winning solution of the Endocv-2021 grand challange. Dependencies pytorch # tested with 1.7 and 1.8 torchvision

Vajira Thambawita 14 Dec 03, 2022