This is the code for our paper "Iconary: A Pictionary-Based Game for Testing Multimodal Communication with Drawings and Text"

Related tags

Deep Learningiconary
Overview

Iconary

This is the code for our paper "Iconary: A Pictionary-Based Game for Testing Multimodal Communication with Drawings and Text". It includes the datasets, models we trained, and our training/evaluations scripts.

Install

Install python >= 3.6 and pytorch >= 1.7.0. This project has been tested with torch==1.7.1, but later versions might work.

Then install the extra requirements:

pip install -r requirements

Finally add the top-level directory to PYTHONPATH:

cd iconary
export PYTHONPATH=`pwd`

Data

Datasets will be downloaded and cached automatically as needed, file_paths.py shows where the files will be stored. By defaults, datasets are stored in ~/data/iconary.

If you want to download the data manually, the dataest can be downloaded here:

We release the complete datasets without held-out labels since computing the automatic metrics for both the Guesser and Drawer requires the entire game to be known. Models should only be trained on the train set and researchers should avoid looking/evaluating on the test sets as much as possible.

Models

We release the following models on S3:

Guesser:

  • TGuesser: s3://ai2-vision-iconary/public-models/tguesser-3b/
  • w/T5-Large: s3://ai2-vision-iconary/public-models/tguesser-large/
  • w/T5-Base: s3://ai2-vision-iconary/public-models/tguesser-base/

Drawer:

  • TDrawer: s3://ai2-vision-iconary/public-models/tdrawer-large/
  • w/T5-Base: s3://ai2-vision-iconary/public-models/tdrawer-base/

To use these models, download the entire directory. For example:

mkdir -p models
aws s3 cp --recursive s3://ai2-vision-iconary/public-models/tguesser-base models/tguesser-base

Train

Guesser

Train TGuesser with:

python iconary/experiments/train_guesser.py --pretrained_model t5-base --output_dir models/tguesser-base

Note our full model use --pretrained_model t5-b3, but that requries a >16GB RAM GPU to run.

Drawing

Train TDrawer with:

python iconary/experiments/train_drawer.py --pretrained_model t5-base --output_dir models/tdrawer-base --grad_accumulation 2

Note our full model use --pretrained_model t5-large, but that requires a >16GB RAM GPU to run.

Automatic Evaluation

These scripts generate drawings/guesses for games in human/human games, and computes automatic metrics from those drawings/guesses. Note our generation scripts will use all GPUs that they can find with torch.cuda.device_count(), to control where it runs use the CUDA_VISIBLE_DEVICES environment variable.

Guesser

To compute automatic metrics for the Guesser, first generate guesses as:

python iconary/experiments/generate_guesses.py path/to/model --dataset ood-valid --output_file guesses.json --unk_boost 2.0

Note that most of our evaluations are done using --unk_boost 2.0 which implements rare-word boosting.

This script will report our automatic metrics, but they can also be re-computed using:

python iconary/experiments/eval_guesses.py guesses.json

Drawer

Generate drawings with:

python iconary/experiments/generate_drawings.py path/to/model --dataset ood-valid --output_file drawings.json

This script will report our automatic metrics, but they can also be re-computed using:

python iconary/experiments/eval_drawings.py drawings.json

Human/AI Evaluation

Our code for running human/AI games is not currently released, if you are interested in running your own trials contact us and we can help you follow our human/AI setup.

Cite

If you use this work, please cite:

"Iconary: A Pictionary-Based Game for Testing MultimodalCommunication with Drawings and Text". Christopher Clark, Jordi Salvador, Dustin Schwenk, Derrick Bonafilia, Mark Yatskar, Eric Kolve, Alvaro Herrasti, Jonghyun Choi, Sachin Mehta, Sam Skjonsberg, Carissa Schoenick, Aaron Sarnat, Hannaneh Hajishirzi, Aniruddha Kembhavi, Oren Etzioni, Ali Farhadi. In EMNLP 2021.

Tensors and neural networks in Haskell

Hasktorch Hasktorch is a library for tensors and neural networks in Haskell. It is an independent open source community project which leverages the co

hasktorch 920 Jan 04, 2023
Experimental code for paper: Generative Adversarial Networks as Variational Training of Energy Based Models

Experimental code for paper: Generative Adversarial Networks as Variational Training of Energy Based Models, under review at ICLR 2017 requirements: T

Shuangfei Zhai 18 Mar 05, 2022
Text to Image Generation with Semantic-Spatial Aware GAN

text2image This repository includes the implementation for Text to Image Generation with Semantic-Spatial Aware GAN This repo is not completely. Netwo

CVDDL 124 Dec 30, 2022
PyTorch code for the paper "Complementarity is the King: Multi-modal and Multi-grained Hierarchical Semantic Enhancement Network for Cross-modal Retrieval".

Complementarity is the King: Multi-modal and Multi-grained Hierarchical Semantic Enhancement Network for Cross-modal Retrieval (M2HSE) PyTorch code fo

Xinlei-Pei 6 Dec 23, 2022
QilingLab challenge writeup

qiling lab writeup shielder 在 2021/7/21 發布了 QilingLab 來幫助學習 qiling framwork 的用法,剛好最近有用到,順手解了一下並寫了一下 writeup。 前情提要 Qiling 是一款功能強大的模擬框架,和 qemu user mode

Yuan 17 Nov 17, 2022
CondNet: Conditional Classifier for Scene Segmentation

CondNet: Conditional Classifier for Scene Segmentation Introduction The fully convolutional network (FCN) has achieved tremendous success in dense vis

ycszen 31 Jul 22, 2022
U2-Net: Going Deeper with Nested U-Structure for Salient Object Detection

The code for our newly accepted paper in Pattern Recognition 2020: "U^2-Net: Going Deeper with Nested U-Structure for Salient Object Detection."

Xuebin Qin 6.5k Jan 09, 2023
Sequential model-based optimization with a `scipy.optimize` interface

Scikit-Optimize Scikit-Optimize, or skopt, is a simple and efficient library to minimize (very) expensive and noisy black-box functions. It implements

Scikit-Optimize 2.5k Jan 04, 2023
Evaluation toolkit of the informative tracking benchmark comprising 9 scenarios, 180 diverse videos, and new challenges.

Informative-tracking-benchmark Informative tracking benchmark (ITB) higher diversity. It contains 9 representative scenarios and 180 diverse videos. m

Xin Li 15 Nov 26, 2022
Honours project, on creating a depth estimation map from two stereo images of featureless regions

image-processing This module generates depth maps for shape-blocked-out images Install If working with anaconda, then from the root directory: conda e

2 Oct 17, 2022
Variational Attention: Propagating Domain-Specific Knowledge for Multi-Domain Learning in Crowd Counting (ICCV, 2021)

DKPNet ICCV 2021 Variational Attention: Propagating Domain-Specific Knowledge for Multi-Domain Learning in Crowd Counting Baseline of DKPNet is availa

19 Oct 14, 2022
ROSITA: Enhancing Vision-and-Language Semantic Alignments via Cross- and Intra-modal Knowledge Integration

ROSITA News & Updates (24/08/2021) Release the demo to perform fine-grained semantic alignments using the pretrained ROSITA model. (15/08/2021) Releas

Vision and Language Group@ MIL 48 Dec 23, 2022
Mask2Former: Masked-attention Mask Transformer for Universal Image Segmentation in TensorFlow 2

Mask2Former: Masked-attention Mask Transformer for Universal Image Segmentation in TensorFlow 2 Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexan

Phan Nguyen 1 Dec 16, 2021
The GitHub repository for the paper: “Time Series is a Special Sequence: Forecasting with Sample Convolution and Interaction“.

SCINet This is the original PyTorch implementation of the following work: Time Series is a Special Sequence: Forecasting with Sample Convolution and I

386 Jan 01, 2023
Lightweight plotting to the terminal. 4x resolution via Unicode.

Uniplot Lightweight plotting to the terminal. 4x resolution via Unicode. When working with production data science code it can be handy to have plotti

Olav Stetter 203 Dec 29, 2022
Industrial Image Anomaly Localization Based on Gaussian Clustering of Pre-trained Feature

Industrial Image Anomaly Localization Based on Gaussian Clustering of Pre-trained Feature Q. Wan, L. Gao, X. Li and L. Wen, "Industrial Image Anomaly

smiler 6 Dec 25, 2022
A clean and extensible PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners

A clean and extensible PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners A PyTorch re-implementation of Mask Autoencoder trai

Tianyu Hua 23 Dec 13, 2022
Deep Learning for 3D Point Clouds: A Survey (IEEE TPAMI, 2020)

🔥Deep Learning for 3D Point Clouds (IEEE TPAMI, 2020)

Qingyong 1.4k Jan 08, 2023
Solving Zero-Shot Learning in Named Entity Recognition with Common Sense Knowledge

Zero-Shot Learning in Named Entity Recognition with Common Sense Knowledge Associated code for the paper Zero-Shot Learning in Named Entity Recognitio

Søren Hougaard Mulvad 13 Dec 25, 2022
Pytorch based library to rank predicted bounding boxes using text/image user's prompts.

pytorch_clip_bbox: Implementation of the CLIP guided bbox ranking for Object Detection. Pytorch based library to rank predicted bounding boxes using t

Sergei Belousov 50 Nov 27, 2022