ROSITA: Enhancing Vision-and-Language Semantic Alignments via Cross- and Intra-modal Knowledge Integration

Overview

ROSITA

News & Updates

(24/08/2021)

  • Release the demo to perform fine-grained semantic alignments using the pretrained ROSITA model.

(15/08/2021)

  • Release the basic framework for ROSITA, including the pretrained base ROSITA model, as well as the scripts to run the fine-tuning and evaluation on three downstream tasks (i.e., VQA, REC, ITR) over six datasets.

Introduction

This repository contains source code necessary to reproduce the results presented in our ACM MM paper ROSITA: Enhancing Vision-and-Language Semantic Alignments via Cross- and Intra-modal Knowledge Integration, which encodes the cROSs- and InTrA-model prior knowledge in a in a unified scene graph to perform knowledge-guided vision-and-language pretraining. Compared with existing counterparts, ROSITA learns better fine-grained semantic alignments across different modalities, thus improving the capability of the pretrained model.

Performance

We compare ROSITA against existing state-of-the-art VLP methods on three downstream tasks. All methods use the base model of Transformer for a fair comparison. The trained checkpoints to reproduce these results are provided in finetune.md.

Tasks VQA REC ITR
Datasets VQAv2
dev | std
RefCOCO
val | testA | testB
RefCOCO+
val | testA | testB
RefCOCOg
val | test
IR-COCO
[email protected] | [email protected] | [email protected]
TR-COCO
[email protected] | [email protected] | [email protected]
IR-Flickr
[email protected] | [email protected] | [email protected]
TR-Flickr
[email protected] | [email protected] | [email protected]
ROSITA 73.91 | 73.97 84.79 | 87.99 | 78.28 76.06 | 82.01 | 67.40 78.23 | 78.25 54.40 | 80.92 | 88.60 71.26 | 91.62 | 95.58 74.08 | 92.44 | 96.08 88.90 | 98.10 | 99.30
SoTA-base 73.59 | 73.67 81.56 | 87.40 | 74.48 76.05 | 81.65 | 65.70 75.90 | 75.93 54.00 | 80.80 | 88.50 70.00 | 91.10 | 95.50 74.74 | 92.86 | 95.82 86.60 | 97.90 | 99.20

Installation

Software and Hardware Requirements

We recommand a workstation with 4 GPU (>= 24GB, e.g., RTX 3090 or V100), 120GB memory and 50GB free disk space. We strongly recommend to use a SSD drive to guarantee high-speed I/O. Also, you should first install some necessary package as follows:

  • Python >= 3.6
  • PyTorch >= 1.4 with Cuda >=10.2
  • torchvision >= 0.5.0
  • Cython
# git clone
$ git clone https://github.com/MILVLG/rosita.git 

# build essential utils
$ cd rosita/rosita/utils/rec
$ python setup.py build
$ cp build/lib*/bbox.cpython*.so .

Dataset Setup

To download the required datasets to run this project, please check datasets.md for details.

Pretraining

Please check pretrain.md for the details for ROSITA pretraining. We currently only provide the pretrained model to run finetuning on downstream tasks. The codes to run pretraining will be released later.

Finetuning

Please check finetune.md for the details for finetuning on downstream tasks. Scripts to run finetuning on downstream tasks are provided. Also, we provide trained models that can be directly evaluated to reproduce the results.

Demo

We provide the Jupyter notebook scripts for reproducing the visualization results shown in our paper.

Acknowledgment

We appreciate the well-known open-source projects such as LXMERT, UNITER, OSCAR, and Huggingface, which help us a lot when writing our codes.

Yuhao Cui (@cuiyuhao1996) and Tong-An Luo (@Zoroaster97) are the main contributors to this repository. Please kindly contact them if you find any issue.

Citations

Please consider citing this paper if you use the code:

@inProceedings{cui2021rosita,
  title={ROSITA: Enhancing Vision-and-Language Semantic Alignments via Cross- and Intra-modal Knowledge Integration},
  author={Cui, Yuhao and Yu, Zhou and Wang, Chunqi and Zhao, Zhongzhou and Zhang, Ji and Wang, Meng and Yu, Jun},
  booktitle={Proceedings of the 29th ACM International Conference on Multimedia},
  year={2021}
}
Owner
Vision and Language Group@ MIL
Hangzhou Dianzi University
Vision and Language Group@ MIL
Source code for paper "Deep Superpixel-based Network for Blind Image Quality Assessment"

DSN-IQA Source code for paper "Deep Superpixel-based Network for Blind Image Quality Assessment" Requirements Python =3.8.0 Pytorch =1.7.1 Usage wit

7 Oct 13, 2022
A curated list of references for MLOps

A curated list of references for MLOps

Larysa Visengeriyeva 9.3k Jan 07, 2023
Implementation of trRosetta and trDesign for Pytorch, made into a convenient package

trRosetta - Pytorch (wip) Implementation of trRosetta and trDesign for Pytorch, made into a convenient package

Phil Wang 67 Dec 17, 2022
A Python wrapper for Google Tesseract

Python Tesseract Python-tesseract is an optical character recognition (OCR) tool for python. That is, it will recognize and "read" the text embedded i

Matthias A Lee 4.6k Jan 05, 2023
The Self-Supervised Learner can be used to train a classifier with fewer labeled examples needed using self-supervised learning.

Published by SpaceML • About SpaceML • Quick Colab Example Self-Supervised Learner The Self-Supervised Learner can be used to train a classifier with

SpaceML 92 Nov 30, 2022
Search Youtube Video and Get Video info

PyYouTube Get Video Data from YouTube link Installation pip install PyYouTube How to use it ? Get Videos Data from pyyoutube import Data yt = Data("ht

lokaman chendekar 35 Nov 25, 2022
An easy way to build PyTorch datasets. Modularly build datasets and automatically cache processed results

EasyDatas An easy way to build PyTorch datasets. Modularly build datasets and automatically cache processed results Installation pip install git+https

Ximing Yang 4 Dec 14, 2021
PRTR: Pose Recognition with Cascade Transformers

PRTR: Pose Recognition with Cascade Transformers Introduction This repository is the official implementation for Pose Recognition with Cascade Transfo

mlpc-ucsd 133 Dec 30, 2022
A Fast Knowledge Distillation Framework for Visual Recognition

FKD: A Fast Knowledge Distillation Framework for Visual Recognition Official PyTorch implementation of paper A Fast Knowledge Distillation Framework f

Zhiqiang Shen 129 Dec 24, 2022
Implements pytorch code for the Accelerated SGD algorithm.

AccSGD This is the code associated with Accelerated SGD algorithm used in the paper On the insufficiency of existing momentum schemes for Stochastic O

205 Jan 02, 2023
[ACL-IJCNLP 2021] Improving Named Entity Recognition by External Context Retrieving and Cooperative Learning

CLNER The code is for our ACL-IJCNLP 2021 paper: Improving Named Entity Recognition by External Context Retrieving and Cooperative Learning CLNER is a

71 Dec 08, 2022
KwaiRec: A Fully-observed Dataset for Recommender Systems (Density: Almost 100%)

KuaiRec: A Fully-observed Dataset for Recommender Systems (Density: Almost 100%) KuaiRec is a real-world dataset collected from the recommendation log

Chongming GAO (高崇铭) 70 Dec 28, 2022
A new codebase for Group Activity Recognition. It contains codes for ICCV 2021 paper: Spatio-Temporal Dynamic Inference Network for Group Activity Recognition and some other methods.

Spatio-Temporal Dynamic Inference Network for Group Activity Recognition The source codes for ICCV2021 Paper: Spatio-Temporal Dynamic Inference Networ

40 Dec 12, 2022
House3D: A Rich and Realistic 3D Environment

House3D: A Rich and Realistic 3D Environment Yi Wu, Yuxin Wu, Georgia Gkioxari and Yuandong Tian House3D is a virtual 3D environment which consists of

Meta Research 1.1k Dec 14, 2022
Multi-Scale Vision Longformer: A New Vision Transformer for High-Resolution Image Encoding

Vision Longformer This project provides the source code for the vision longformer paper. Multi-Scale Vision Longformer: A New Vision Transformer for H

Microsoft 209 Dec 30, 2022
Help you understand Manual and w/ Clutch point while driving.

简体中文 forza_auto_gear forza_auto_gear is a tool for Forza Horizon 5. It will help us understand the best gear shift point using Manual or w/ Clutch in

15 Oct 08, 2022
Research into Forex price prediction from price history using Deep Sequence Modeling with Stacked LSTMs.

Forex Data Prediction via Recurrent Neural Network Deep Sequence Modeling Research Paper Our research paper can be viewed here Installation Clone the

Alex Taradachuk 2 Aug 07, 2022
An improvement of FasterGICP: Acceptance-rejection Sampling based 3D Lidar Odometry

fasterGICP This package is an improvement of fast_gicp Please cite our paper if possible. W. Jikai, M. Xu, F. Farzin, D. Dai and Z. Chen, "FasterGICP:

79 Dec 31, 2022
Hi Guys, here I am providing examples, which will help you in Lerarning Python

LearningPython Hi guys, here I am trying to include as many practice examples of Python Language, as i Myself learn, and hope these will help you in t

4 Feb 03, 2022
The official repository for paper ''Domain Generalization for Vision-based Driving Trajectory Generation'' submitted to ICRA 2022

DG-TrajGen The official repository for paper ''Domain Generalization for Vision-based Driving Trajectory Generation'' submitted to ICRA 2022. Our Meth

Wang 25 Sep 26, 2022