ROSITA: Enhancing Vision-and-Language Semantic Alignments via Cross- and Intra-modal Knowledge Integration

Overview

ROSITA

News & Updates

(24/08/2021)

  • Release the demo to perform fine-grained semantic alignments using the pretrained ROSITA model.

(15/08/2021)

  • Release the basic framework for ROSITA, including the pretrained base ROSITA model, as well as the scripts to run the fine-tuning and evaluation on three downstream tasks (i.e., VQA, REC, ITR) over six datasets.

Introduction

This repository contains source code necessary to reproduce the results presented in our ACM MM paper ROSITA: Enhancing Vision-and-Language Semantic Alignments via Cross- and Intra-modal Knowledge Integration, which encodes the cROSs- and InTrA-model prior knowledge in a in a unified scene graph to perform knowledge-guided vision-and-language pretraining. Compared with existing counterparts, ROSITA learns better fine-grained semantic alignments across different modalities, thus improving the capability of the pretrained model.

Performance

We compare ROSITA against existing state-of-the-art VLP methods on three downstream tasks. All methods use the base model of Transformer for a fair comparison. The trained checkpoints to reproduce these results are provided in finetune.md.

Tasks VQA REC ITR
Datasets VQAv2
dev | std
RefCOCO
val | testA | testB
RefCOCO+
val | testA | testB
RefCOCOg
val | test
IR-COCO
[email protected] | [email protected] | [email protected]
TR-COCO
[email protected] | [email protected] | [email protected]
IR-Flickr
[email protected] | [email protected] | [email protected]
TR-Flickr
[email protected] | [email protected] | [email protected]
ROSITA 73.91 | 73.97 84.79 | 87.99 | 78.28 76.06 | 82.01 | 67.40 78.23 | 78.25 54.40 | 80.92 | 88.60 71.26 | 91.62 | 95.58 74.08 | 92.44 | 96.08 88.90 | 98.10 | 99.30
SoTA-base 73.59 | 73.67 81.56 | 87.40 | 74.48 76.05 | 81.65 | 65.70 75.90 | 75.93 54.00 | 80.80 | 88.50 70.00 | 91.10 | 95.50 74.74 | 92.86 | 95.82 86.60 | 97.90 | 99.20

Installation

Software and Hardware Requirements

We recommand a workstation with 4 GPU (>= 24GB, e.g., RTX 3090 or V100), 120GB memory and 50GB free disk space. We strongly recommend to use a SSD drive to guarantee high-speed I/O. Also, you should first install some necessary package as follows:

  • Python >= 3.6
  • PyTorch >= 1.4 with Cuda >=10.2
  • torchvision >= 0.5.0
  • Cython
# git clone
$ git clone https://github.com/MILVLG/rosita.git 

# build essential utils
$ cd rosita/rosita/utils/rec
$ python setup.py build
$ cp build/lib*/bbox.cpython*.so .

Dataset Setup

To download the required datasets to run this project, please check datasets.md for details.

Pretraining

Please check pretrain.md for the details for ROSITA pretraining. We currently only provide the pretrained model to run finetuning on downstream tasks. The codes to run pretraining will be released later.

Finetuning

Please check finetune.md for the details for finetuning on downstream tasks. Scripts to run finetuning on downstream tasks are provided. Also, we provide trained models that can be directly evaluated to reproduce the results.

Demo

We provide the Jupyter notebook scripts for reproducing the visualization results shown in our paper.

Acknowledgment

We appreciate the well-known open-source projects such as LXMERT, UNITER, OSCAR, and Huggingface, which help us a lot when writing our codes.

Yuhao Cui (@cuiyuhao1996) and Tong-An Luo (@Zoroaster97) are the main contributors to this repository. Please kindly contact them if you find any issue.

Citations

Please consider citing this paper if you use the code:

@inProceedings{cui2021rosita,
  title={ROSITA: Enhancing Vision-and-Language Semantic Alignments via Cross- and Intra-modal Knowledge Integration},
  author={Cui, Yuhao and Yu, Zhou and Wang, Chunqi and Zhao, Zhongzhou and Zhang, Ji and Wang, Meng and Yu, Jun},
  booktitle={Proceedings of the 29th ACM International Conference on Multimedia},
  year={2021}
}
Owner
Vision and Language Group@ MIL
Hangzhou Dianzi University
Vision and Language Group@ MIL
Implementation of the SUMO (Slim U-Net trained on MODA) model

SUMO - Slim U-Net trained on MODA Implementation of the SUMO (Slim U-Net trained on MODA) model as described in: TODO: add reference to paper once ava

6 Nov 19, 2022
On-device wake word detection powered by deep learning.

Porcupine Made in Vancouver, Canada by Picovoice Porcupine is a highly-accurate and lightweight wake word engine. It enables building always-listening

Picovoice 2.8k Dec 29, 2022
Pytorch Lightning 1.2k Jan 06, 2023
Relative Positional Encoding for Transformers with Linear Complexity

Stochastic Positional Encoding (SPE) This is the source code repository for the ICML 2021 paper Relative Positional Encoding for Transformers with Lin

Antoine Liutkus 48 Nov 16, 2022
Code for the SIGGRAPH 2022 paper "DeltaConv: Anisotropic Operators for Geometric Deep Learning on Point Clouds."

DeltaConv [Paper] [Project page] Code for the SIGGRAPH 2022 paper "DeltaConv: Anisotropic Operators for Geometric Deep Learning on Point Clouds" by Ru

98 Nov 26, 2022
Optimized code based on M2 for faster image captioning training

Transformer Captioning This repository contains the code for Transformer-based image captioning. Based on meshed-memory-transformer, we further optimi

lyricpoem 16 Dec 16, 2022
Deep universal probabilistic programming with Python and PyTorch

Getting Started | Documentation | Community | Contributing Pyro is a flexible, scalable deep probabilistic programming library built on PyTorch. Notab

7.7k Dec 30, 2022
A Runtime method overload decorator which should behave like a compiled language

strongtyping-pyoverload A Runtime method overload decorator which should behave like a compiled language there is a override decorator from typing whi

20 Oct 31, 2022
Attention-guided gan for synthesizing IR images

SI-AGAN Attention-guided gan for synthesizing IR images This repository contains the Tensorflow code for "Pedestrian Gender Recognition by Style Trans

1 Oct 25, 2021
Code for the paper titled "Generalized Depthwise-Separable Convolutions for Adversarially Robust and Efficient Neural Networks" (NeurIPS 2021 Spotlight).

Generalized Depthwise-Separable Convolutions for Adversarially Robust and Efficient Neural Networks This repository contains the code and pre-trained

Hassan Dbouk 7 Dec 05, 2022
A port of muP to JAX/Haiku

MUP for Haiku This is a (very preliminary) port of Yang and Hu et al.'s μP repo to Haiku and JAX. It's not feature complete, and I'm very open to sugg

18 Dec 30, 2022
Building Ellee — A GPT-3 and Computer Vision Powered Talking Robotic Teddy Bear With Human Level Conversation Intelligence

Using an object detection and facial recognition system built on MobileNetSSDV2 and Dlib and running on an NVIDIA Jetson Nano, a GPT-3 model, Google Speech Recognition, Amazon Polly and servo motors,

24 Oct 26, 2022
Pytorch implementation code for [Neural Architecture Search for Spiking Neural Networks]

Neural Architecture Search for Spiking Neural Networks Pytorch implementation code for [Neural Architecture Search for Spiking Neural Networks] (https

Intelligent Computing Lab at Yale University 28 Nov 18, 2022
YOLOv3 in PyTorch > ONNX > CoreML > TFLite

This repository represents Ultralytics open-source research into future object detection methods, and incorporates lessons learned and best practices

Ultralytics 9.3k Jan 07, 2023
Deep learning model for EEG artifact removal

DeepSeparator Introduction Electroencephalogram (EEG) recordings are often contaminated with artifacts. Various methods have been developed to elimina

23 Dec 21, 2022
VoxHRNet - Whole Brain Segmentation with Full Volume Neural Network

VoxHRNet This is the official implementation of the following paper: Whole Brain Segmentation with Full Volume Neural Network Yeshu Li, Jonathan Cui,

Microsoft 12 Nov 24, 2022
A python script to dump all the challenges locally of a CTFd-based Capture the Flag.

A python script to dump all the challenges locally of a CTFd-based Capture the Flag. Features Connects and logins to a remote CTFd instance. Dumps all

Podalirius 77 Dec 07, 2022
Inverse Optimal Control Adapted to the Noise Characteristics of the Human Sensorimotor System

Inverse Optimal Control Adapted to the Noise Characteristics of the Human Sensorimotor System This repository contains code for the paper Schultheis,

2 Oct 28, 2022
Kaggle Lyft Motion Prediction for Autonomous Vehicles 4th place solution

Lyft Motion Prediction for Autonomous Vehicles Code for the 4th place solution of Lyft Motion Prediction for Autonomous Vehicles on Kaggle. Discussion

44 Jun 27, 2022
The Medical Detection Toolkit contains 2D + 3D implementations of prevalent object detectors such as Mask R-CNN, Retina Net, Retina U-Net, as well as a training and inference framework focused on dealing with medical images.

The Medical Detection Toolkit contains 2D + 3D implementations of prevalent object detectors such as Mask R-CNN, Retina Net, Retina U-Net, as well as a training and inference framework focused on dea

MIC-DKFZ 1.2k Jan 04, 2023