ROSITA: Enhancing Vision-and-Language Semantic Alignments via Cross- and Intra-modal Knowledge Integration

Overview

ROSITA

News & Updates

(24/08/2021)

  • Release the demo to perform fine-grained semantic alignments using the pretrained ROSITA model.

(15/08/2021)

  • Release the basic framework for ROSITA, including the pretrained base ROSITA model, as well as the scripts to run the fine-tuning and evaluation on three downstream tasks (i.e., VQA, REC, ITR) over six datasets.

Introduction

This repository contains source code necessary to reproduce the results presented in our ACM MM paper ROSITA: Enhancing Vision-and-Language Semantic Alignments via Cross- and Intra-modal Knowledge Integration, which encodes the cROSs- and InTrA-model prior knowledge in a in a unified scene graph to perform knowledge-guided vision-and-language pretraining. Compared with existing counterparts, ROSITA learns better fine-grained semantic alignments across different modalities, thus improving the capability of the pretrained model.

Performance

We compare ROSITA against existing state-of-the-art VLP methods on three downstream tasks. All methods use the base model of Transformer for a fair comparison. The trained checkpoints to reproduce these results are provided in finetune.md.

Tasks VQA REC ITR
Datasets VQAv2
dev | std
RefCOCO
val | testA | testB
RefCOCO+
val | testA | testB
RefCOCOg
val | test
IR-COCO
[email protected] | [email protected] | [email protected]
TR-COCO
[email protected] | [email protected] | [email protected]
IR-Flickr
[email protected] | [email protected] | [email protected]
TR-Flickr
[email protected] | [email protected] | [email protected]
ROSITA 73.91 | 73.97 84.79 | 87.99 | 78.28 76.06 | 82.01 | 67.40 78.23 | 78.25 54.40 | 80.92 | 88.60 71.26 | 91.62 | 95.58 74.08 | 92.44 | 96.08 88.90 | 98.10 | 99.30
SoTA-base 73.59 | 73.67 81.56 | 87.40 | 74.48 76.05 | 81.65 | 65.70 75.90 | 75.93 54.00 | 80.80 | 88.50 70.00 | 91.10 | 95.50 74.74 | 92.86 | 95.82 86.60 | 97.90 | 99.20

Installation

Software and Hardware Requirements

We recommand a workstation with 4 GPU (>= 24GB, e.g., RTX 3090 or V100), 120GB memory and 50GB free disk space. We strongly recommend to use a SSD drive to guarantee high-speed I/O. Also, you should first install some necessary package as follows:

  • Python >= 3.6
  • PyTorch >= 1.4 with Cuda >=10.2
  • torchvision >= 0.5.0
  • Cython
# git clone
$ git clone https://github.com/MILVLG/rosita.git 

# build essential utils
$ cd rosita/rosita/utils/rec
$ python setup.py build
$ cp build/lib*/bbox.cpython*.so .

Dataset Setup

To download the required datasets to run this project, please check datasets.md for details.

Pretraining

Please check pretrain.md for the details for ROSITA pretraining. We currently only provide the pretrained model to run finetuning on downstream tasks. The codes to run pretraining will be released later.

Finetuning

Please check finetune.md for the details for finetuning on downstream tasks. Scripts to run finetuning on downstream tasks are provided. Also, we provide trained models that can be directly evaluated to reproduce the results.

Demo

We provide the Jupyter notebook scripts for reproducing the visualization results shown in our paper.

Acknowledgment

We appreciate the well-known open-source projects such as LXMERT, UNITER, OSCAR, and Huggingface, which help us a lot when writing our codes.

Yuhao Cui (@cuiyuhao1996) and Tong-An Luo (@Zoroaster97) are the main contributors to this repository. Please kindly contact them if you find any issue.

Citations

Please consider citing this paper if you use the code:

@inProceedings{cui2021rosita,
  title={ROSITA: Enhancing Vision-and-Language Semantic Alignments via Cross- and Intra-modal Knowledge Integration},
  author={Cui, Yuhao and Yu, Zhou and Wang, Chunqi and Zhao, Zhongzhou and Zhang, Ji and Wang, Meng and Yu, Jun},
  booktitle={Proceedings of the 29th ACM International Conference on Multimedia},
  year={2021}
}
Owner
Vision and Language Group@ MIL
Hangzhou Dianzi University
Vision and Language Group@ MIL
"Neural Turing Machine" in Tensorflow

Neural Turing Machine in Tensorflow Tensorflow implementation of Neural Turing Machine. This implementation uses an LSTM controller. NTM models with m

Taehoon Kim 1k Dec 06, 2022
Top #1 Submission code for the first https://alphamev.ai MEV competition with best AUC (0.9893) and MSE (0.0982).

alphamev-winning-submission Top #1 Submission code for the first alphamev MEV competition with best AUC (0.9893) and MSE (0.0982). The code won't run

70 Oct 29, 2022
Heat transfer problemas solved using python

heat-transfer Heat transfer problems solved using python isolation-convection.py compares the temperature distribution on the problem as shown in the

2 Nov 14, 2021
Code and Datasets from the paper "Self-supervised contrastive learning for volcanic unrest detection from InSAR data"

Code and Datasets from the paper "Self-supervised contrastive learning for volcanic unrest detection from InSAR data" You can download the pretrained

Bountos Nikos 3 May 07, 2022
Simple SN-GAN to generate CryptoPunks

CryptoPunks GAN Simple SN-GAN to generate CryptoPunks. Neural network architecture and training code has been modified from the PyTorch DCGAN example.

Teddy Koker 66 Dec 15, 2022
Official codebase for Legged Robots that Keep on Learning: Fine-Tuning Locomotion Policies in the Real World

Legged Robots that Keep on Learning Official codebase for Legged Robots that Keep on Learning: Fine-Tuning Locomotion Policies in the Real World, whic

Laura Smith 70 Dec 07, 2022
Code release for NeurIPS 2020 paper "Co-Tuning for Transfer Learning"

CoTuning Official implementation for NeurIPS 2020 paper Co-Tuning for Transfer Learning. [News] 2021/01/13 The COCO 70 dataset used in the paper is av

THUML @ Tsinghua University 35 Sep 23, 2022
Core ML tools contain supporting tools for Core ML model conversion, editing, and validation.

Core ML Tools Use coremltools to convert machine learning models from third-party libraries to the Core ML format. The Python package contains the sup

Apple 3k Jan 08, 2023
KIDA: Knowledge Inheritance in Data Aggregation

KIDA: Knowledge Inheritance in Data Aggregation This project releases our 1st place solution on NeurIPS2021 ML4CO Dual Task. Slide and model weights a

24 Sep 08, 2022
Official PyTorch implementation of "Contrastive Learning from Extremely Augmented Skeleton Sequences for Self-supervised Action Recognition" in AAAI2022.

AimCLR This is an official PyTorch implementation of "Contrastive Learning from Extremely Augmented Skeleton Sequences for Self-supervised Action Reco

Gty 44 Dec 17, 2022
Google Recaptcha solver.

byerecaptcha - Google Recaptcha solver. Model and some codes takes from embium's repository -Installation- pip install byerecaptcha -How to use- from

Vladislav Zenkevich 21 Dec 19, 2022
MPRNet-Cloud-removal: Progressive cloud removal

MPRNet-Cloud-removal Progressive cloud removal Requirements 1.Pytorch = 1.0 2.Python 3 3.NVIDIA GPU + CUDA 9.0 4.Tensorboard Installation 1.Clone the

Semi 95 Dec 18, 2022
Pixray is an image generation system

Pixray is an image generation system

pixray 883 Jan 07, 2023
Deep ViT Features as Dense Visual Descriptors

dino-vit-features [paper] [project page] Official implementation of the paper "Deep ViT Features as Dense Visual Descriptors". We demonstrate the effe

Shir Amir 113 Dec 24, 2022
You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling

You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling Transformer-based models are widely used in natural language processi

Zhanpeng Zeng 12 Jan 01, 2023
HPRNet: Hierarchical Point Regression for Whole-Body Human Pose Estimation

HPRNet: Hierarchical Point Regression for Whole-Body Human Pose Estimation Official PyTroch implementation of HPRNet. HPRNet: Hierarchical Point Regre

Nermin Samet 53 Dec 04, 2022
As a part of the HAKE project, includes the reproduced SOTA models and the corresponding HAKE-enhanced versions (CVPR2020).

HAKE-Action HAKE-Action (TensorFlow) is a project to open the SOTA action understanding studies based on our Human Activity Knowledge Engine. It inclu

Yong-Lu Li 94 Nov 18, 2022
MediaPipeで姿勢推定を行い、Tokyo2020オリンピック風のピクトグラムを表示するデモ

Tokyo2020-Pictogram-using-MediaPipe MediaPipeで姿勢推定を行い、Tokyo2020オリンピック風のピクトグラムを表示するデモです。 Tokyo2020Pictgram02.mp4 Requirement mediapipe 0.8.6 or later O

KazuhitoTakahashi 295 Dec 26, 2022
ST++: Make Self-training Work Better for Semi-supervised Semantic Segmentation

ST++ This is the official PyTorch implementation of our paper: ST++: Make Self-training Work Better for Semi-supervised Semantic Segmentation. Lihe Ya

Lihe Yang 147 Jan 03, 2023
A PyTorch implementation of "Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks" (KDD 2019).

ClusterGCN ⠀⠀ A PyTorch implementation of "Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks" (KDD 2019). A

Benedek Rozemberczki 697 Dec 27, 2022