Official repository for the ICCV 2021 paper: UltraPose: Synthesizing Dense Pose with 1 Billion Points by Human-body Decoupling 3D Model.

Overview

UltraPose: Synthesizing Dense Pose with 1 Billion Points by Human-body Decoupling 3D Model

Official repository for the ICCV 2021 paper:

UltraPose: Synthesizing Dense Pose with 1 Billion Points by Human-body Decoupling 3D Model [PDF]

Haonan Yan, Jiaqi Chen, Xujie Zhang, Shengkai Zhang, Nianhong Jiao, Xiaodan Liang, Tianxiang Zheng

The dataset is now available at Baidu net disk (code: bpi2) or google drive.

Introduction

teaser In this work, we introduce a new 3D human-body model with a series of decoupled parameters that could freely control the generation of the body. Furthermore, we build a data generation system based on this decoupling 3D model, and construct an ultra dense synthetic benchmark UltraPose, containing around 1.3 billion corresponding points.

Installation

We recommend creating a clean conda environment and install all dependencies. You can do this as follows:

step1

conda create -n ultrapose python=3.7
conda activate ultrapose

step2

conda install pytorch=1.7.1 torchvision cudatoolkit=10.2 -c pytorch

step3

pip install ml-collections opencv-python imgaug visdom pycocotools Cython future h5py

You need to build python3 densepose for evaluation. You can do this as follows:

cd $UltraPoseDir/eval
make
cd $UltraPoseDir/eval/DensePoseData
bash get_eval_data.sh

Training

For single GPU training, please use default configurations by running:

python train.py --dataroot data/ultrapose

Besides, you can also use visdom to monitor the training process.

python -m visdom.server
python train.py --dataroot data/ultrapose --use_visdom

For multi-GPU training with default configurations, you can modify train_transformer.sh accordingly and run:

sh train_transformer.sh

Evaluation

python evaluation.py

Dataset

teaser The dataset is now available from Baidu net disk (code: bpi2) or google drive.

Extract the data and put them under $UltraPoseDir/data.

Dataset Persons Points #Avg Density Mask Resolution No error
Densepose-COCO 49K 5.2M 106 256x256
UltraPose 5K 13M 2.6K 512x512

Acknowledgements

Parts of the code are taken or adapted from the following repos:

Citation

If you use this code or Ultrapose for your research, please cite our work:

@inproceedings{yan2021ultrapose,
  title={UltraPose: Synthesizing Dense Pose With 1 Billion Points by Human-Body Decoupling 3D Model},
  author={Yan, Haonan and Chen, Jiaqi and Zhang, Xujie and Zhang, Shengkai and Jiao, Nianhong and Liang, Xiaodan and Zheng, Tianxiang},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
  pages={10891--10900},
  year={2021}
}
Owner
MomoAILab
MomoAILab
An original implementation of "Noisy Channel Language Model Prompting for Few-Shot Text Classification"

Channel LM Prompting (and beyond) This includes an original implementation of Sewon Min, Mike Lewis, Hannaneh Hajishirzi, Luke Zettlemoyer. "Noisy Cha

Sewon Min 92 Jan 07, 2023
Code for ACL2021 long paper: Knowledgeable or Educated Guess? Revisiting Language Models as Knowledge Bases

LANKA This is the source code for paper: Knowledgeable or Educated Guess? Revisiting Language Models as Knowledge Bases (ACL 2021, long paper) Referen

Boxi Cao 30 Oct 24, 2022
MiniSom is a minimalistic implementation of the Self Organizing Maps

MiniSom Self Organizing Maps MiniSom is a minimalistic and Numpy based implementation of the Self Organizing Maps (SOM). SOM is a type of Artificial N

Giuseppe Vettigli 1.2k Jan 03, 2023
[NeurIPS2021] Exploring Architectural Ingredients of Adversarially Robust Deep Neural Networks

Exploring Architectural Ingredients of Adversarially Robust Deep Neural Networks Code for NeurIPS 2021 Paper "Exploring Architectural Ingredients of A

Hanxun Huang 26 Dec 01, 2022
FrankMocap: A Strong and Easy-to-use Single View 3D Hand+Body Pose Estimator

FrankMocap pursues an easy-to-use single view 3D motion capture system developed by Facebook AI Research (FAIR). FrankMocap provides state-of-the-art 3D pose estimation outputs for body, hand, and bo

Facebook Research 1.9k Jan 07, 2023
Zen-NAS: A Zero-Shot NAS for High-Performance Deep Image Recognition

Zen-NAS: A Zero-Shot NAS for High-Performance Deep Image Recognition How Fast Compare to Other Zero-Shot NAS Proxies on CIFAR-10/100 Pre-trained Model

190 Dec 29, 2022
FaceAnon - Anonymize people in images and videos using yolov5-crowdhuman

Face Anonymizer Blur faces from image and video files in /input/ folder. Require

22 Nov 03, 2022
Deep Learning Theory

Deep Learning Theory 整理了一些深度学习的理论相关内容,持续更新。 Overview Recent advances in deep learning theory 总结了目前深度学习理论研究的六个方向的一些结果,概述型,没做深入探讨(2021)。 1.1 complexity

fq 103 Jan 04, 2023
Official repository for Few-shot Image Generation via Cross-domain Correspondence (CVPR '21)

Few-shot Image Generation via Cross-domain Correspondence Utkarsh Ojha, Yijun Li, Jingwan Lu, Alexei A. Efros, Yong Jae Lee, Eli Shechtman, Richard Zh

Utkarsh Ojha 251 Dec 11, 2022
[SIGGRAPH Asia 2019] Artistic Glyph Image Synthesis via One-Stage Few-Shot Learning

AGIS-Net Introduction This is the official PyTorch implementation of the Artistic Glyph Image Synthesis via One-Stage Few-Shot Learning. paper | suppl

Yue Gao 102 Jan 02, 2023
PyTorch implementation of "Supervised Contrastive Learning" (and SimCLR incidentally)

PyTorch implementation of "Supervised Contrastive Learning" (and SimCLR incidentally)

Yonglong Tian 2.2k Jan 08, 2023
For IBM Quantum Challenge 2021 (May 20 - 26)

IBM Quantum Challenge 2021 Introduction Commemorating the 40-year anniversary of the Physics of Computation conference, and 5-year anniversary of IBM

Qiskit Community 140 Jan 01, 2023
OSLO: Open Source framework for Large-scale transformer Optimization

O S L O Open Source framework for Large-scale transformer Optimization What's New: December 21, 2021 Released OSLO 1.0. What is OSLO about? OSLO is a

TUNiB 280 Nov 24, 2022
Pytoydl: A toy deep learning framework built upon numpy.

Documents: https://pytoydl.readthedocs.io/zh/latest/ Pytoydl A toy deep learning framework built upon numpy. You can star this repository to keep trac

28 Dec 10, 2022
A real-time motion capture system that estimates poses and global translations using only 6 inertial measurement units

TransPose Code for our SIGGRAPH 2021 paper "TransPose: Real-time 3D Human Translation and Pose Estimation with Six Inertial Sensors". This repository

Xinyu Yi 261 Dec 31, 2022
A visualisation tool for Deep Reinforcement Learning

DRLVIS - Visualising Deep Reinforcement Learning Created by Marios Sirtmatsis with the support of Alex Bäuerle. DRLVis is an application used for visu

Marios Sirtmatsis 1 Nov 04, 2021
learning and feeling SLAM together with hands-on-experiments

modern-slam-tutorial-python Learning and feeling SLAM together with hands-on-experiments 😀 😃 😆 Dependencies Most of the examples are based on GTSAM

Giseop Kim 59 Dec 22, 2022
Official PyTorch code for WACV 2022 paper "CFLOW-AD: Real-Time Unsupervised Anomaly Detection with Localization via Conditional Normalizing Flows"

CFLOW-AD: Real-Time Unsupervised Anomaly Detection with Localization via Conditional Normalizing Flows WACV 2022 preprint:https://arxiv.org/abs/2107.1

Denis 156 Dec 28, 2022
Code for HodgeNet: Learning Spectral Geometry on Triangle Meshes, in SIGGRAPH 2021.

HodgeNet | Webpage | Paper | Video HodgeNet: Learning Spectral Geometry on Triangle Meshes Dmitriy Smirnov, Justin Solomon SIGGRAPH 2021 Set-up To ins

Dima Smirnov 61 Nov 27, 2022
Dirty Pixels: Towards End-to-End Image Processing and Perception

Dirty Pixels: Towards End-to-End Image Processing and Perception This repository contains the code for the paper Dirty Pixels: Towards End-to-End Imag

50 Nov 18, 2022