Localization Distillation for Object Detection

Overview

Localization Distillation for Object Detection

This repo is based on mmDetection.

This is the code for our paper:

LD is the extension of knowledge distillation on localization task, which utilizes the learned bbox distributions to transfer the localization dark knowledge from teacher to student.

LD stably improves over GFocalV1 about ~0.8 AP and ~1 AR100 without adding any computational cost!

Introduction

Knowledge distillation (KD) has witnessed its powerful ability in learning compact models in deep learning field, but it is still limited in distilling localization information for object detection. Existing KD methods for object detection mainly focus on mimicking deep features between teacher model and student model, which not only is restricted by specific model architectures, but also cannot distill localization ambiguity. In this paper, we first propose localization distillation (LD) for object detection. In particular, our LD can be formulated as standard KD by adopting the general localization representation of bounding box. Our LD is very flexible, and is applicable to distill localization ambiguity for arbitrary architecture of teacher model and student model. Moreover, it is interesting to find that Self-LD, i.e., distilling teacher model itself, can further boost state-of-the-art performance. Second, we suggest a teacher assistant (TA) strategy to fill the possible gap between teacher model and student model, by which the distillation effectiveness can be guaranteed even the selected teacher model is not optimal. On benchmark datasets PASCAL VOC and MS COCO, our LD can consistently improve the performance for student detectors, and also boosts state-of-the-art detectors notably.

Installation

Please refer to INSTALL.md for installation and dataset preparation.

Get Started

Please see GETTING_STARTED.md for the basic usage of MMDetection.

Train

# assume that you are under the root directory of this project,
# and you have activated your virtual environment if needed.
# and with COCO dataset in 'data/coco/'

./tools/dist_train.sh configs/ld/ld_gflv1_r101_r50_fpn_coco_1x.py 8

Learning rate setting

lr=(samples_per_gpu * num_gpu) / 16 * 0.01

For 2 GPUs and mini-batch size 6, the relevant portion of the config file would be:

optimizer = dict(type='SGD', lr=0.00375, momentum=0.9, weight_decay=0.0001)
data = dict(
    samples_per_gpu=3,

For 8 GPUs and mini-batch size 16, the relevant portion of the config file would be:

optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
data = dict(
    samples_per_gpu=2,

Convert model

After training with LD, the weight file .pth will be large. You'd better convert the model to save a new small one. See convert_model.py#L38-L40, you can set them to your .pth file and config file. Then, run

python convert_model.py

Speed Test (FPS)

CUDA_VISIBLE_DEVICES=0 python3 ./tools/benchmark.py configs/ld/ld_gflv1_r101_r50_fpn_coco_1x.py work_dirs/ld_gflv1_r101_r50_fpn_coco_1x/epoch_24.pth

COCO Evaluation

./tools/dist_test.sh configs/ld/ld_gflv1_r101_r50_fpn_coco_1x.py work_dirs/ld_gflv1_r101_r50_fpn_coco_1x/epoch_24.pth 8 --eval bbox

GFocalV1 with LD

Teacher Student Training schedule Mini-batch size AP (val) AP50 (val) AP75 (val) AP (test-dev) AP50 (test-dev) AP75 (test-dev) AR100 (test-dev)
-- R-18 1x 6 35.8 53.1 38.2 36.0 53.4 38.7 55.3
R-101 R-18 1x 6 36.5 52.9 39.3 36.8 53.5 39.9 56.6
-- R-34 1x 6 38.9 56.6 42.2 39.2 56.9 42.3 58.0
R-101 R-34 1x 6 39.8 56.6 43.1 40.0 57.1 43.5 59.3
-- R-50 1x 6 40.1 58.2 43.1 40.5 58.8 43.9 59.0
R-101 R-50 1x 6 41.1 58.7 44.9 41.2 58.8 44.7 59.8
-- R-101 2x 6 44.6 62.9 48.4 45.0 63.6 48.9 62.3
R-101-DCN R-101 2x 6 45.4 63.1 49.5 45.6 63.7 49.8 63.3

GFocalV1 with Self-LD

Teacher Student Training schedule Mini-batch size AP (val) AP50 (val) AP75 (val)
-- R-18 1x 6 35.8 53.1 38.2
R-18 R-18 1x 6 36.1 52.9 38.5
-- R-50 1x 6 40.1 58.2 43.1
R-50 R-50 1x 6 40.6 58.2 43.8
-- X-101-32x4d-DCN 1x 4 46.9 65.4 51.1
X-101-32x4d-DCN X-101-32x4d-DCN 1x 4 47.5 65.8 51.8

GFocalV2 with LD

Teacher Student Training schedule Mini-batch size AP (test-dev) AP50 (test-dev) AP75 (test-dev) AR100 (test-dev)
-- R-50 2x 16 44.4 62.3 48.5 62.4
R-101 R-50 2x 16 44.8 62.4 49.0 63.1
-- R-101 2x 16 46.0 64.1 50.2 63.5
R-101-DCN R-101 2x 16 46.8 64.5 51.1 64.3
-- R-101-DCN 2x 16 48.2 66.6 52.6 64.4
R2-101-DCN R-101-DCN 2x 16 49.1 67.1 53.7 65.6
-- X-101-32x4d-DCN 2x 16 49.0 67.6 53.4 64.7
R2-101-DCN X-101-32x4d-DCN 2x 16 50.2 68.3 54.9 66.3
-- R2-101-DCN 2x 16 50.5 68.9 55.1 66.2
R2-101-DCN R2-101-DCN 2x 16 51.0 69.1 55.9 66.8

VOC Evaluation

./tools/dist_test.sh configs/ld/ld_gflv1_r101_r18_fpn_voc.py work_dirs/ld_gflv1_r101_r18_fpn_voc/epoch_4.pth 8 --eval mAP

GFocalV1 with LD

Teacher Student Training Epochs Mini-batch size AP AP50 AP75
-- R-18 4 6 51.8 75.8 56.3
R-101 R-18 4 6 53.0 75.9 57.6
-- R-50 4 6 55.8 79.0 60.7
R-101 R-50 4 6 56.1 78.5 61.2
-- R-34 4 6 55.7 78.9 60.6
R-101-DCN R-34 4 6 56.7 78.4 62.1
-- R-101 4 6 57.6 80.4 62.7
R-101-DCN R-101 4 6 58.4 80.2 63.7

This is an example of evaluation results (R-101→R-18).

+-------------+------+-------+--------+-------+
| class       | gts  | dets  | recall | ap    |
+-------------+------+-------+--------+-------+
| aeroplane   | 285  | 4154  | 0.081  | 0.030 |
| bicycle     | 337  | 7124  | 0.125  | 0.108 |
| bird        | 459  | 5326  | 0.096  | 0.018 |
| boat        | 263  | 8307  | 0.065  | 0.034 |
| bottle      | 469  | 10203 | 0.051  | 0.045 |
| bus         | 213  | 4098  | 0.315  | 0.247 |
| car         | 1201 | 16563 | 0.193  | 0.131 |
| cat         | 358  | 4878  | 0.254  | 0.128 |
| chair       | 756  | 32655 | 0.053  | 0.027 |
| cow         | 244  | 4576  | 0.131  | 0.109 |
| diningtable | 206  | 13542 | 0.150  | 0.117 |
| dog         | 489  | 6446  | 0.196  | 0.076 |
| horse       | 348  | 5855  | 0.144  | 0.036 |
| motorbike   | 325  | 6733  | 0.052  | 0.017 |
| person      | 4528 | 51959 | 0.099  | 0.037 |
| pottedplant | 480  | 12979 | 0.031  | 0.009 |
| sheep       | 242  | 4706  | 0.132  | 0.060 |
| sofa        | 239  | 9640  | 0.192  | 0.060 |
| train       | 282  | 4986  | 0.142  | 0.042 |
| tvmonitor   | 308  | 7922  | 0.078  | 0.045 |
+-------------+------+-------+--------+-------+
| mAP         |      |       |        | 0.069 |
+-------------+------+-------+--------+-------+
AP:  0.530091167986393
['AP50: 0.759393', 'AP55: 0.744544', 'AP60: 0.724239', 'AP65: 0.693551', 'AP70: 0.639848', 'AP75: 0.576284', 'AP80: 0.489098', 'AP85: 0.378586', 'AP90: 0.226534', 'AP95: 0.068834']
{'mAP': 0.7593928575515747}

Note:

  • For more experimental details, please refer to GFocalV1, GFocalV2 and mmdetection.
  • According to ATSS, there is no gap between box-based regression and point-based regression. Personal conjectures: 1) If xywh form is able to work when using general distribution (apply uniform subinterval division for xywh), our LD can also work in xywh form. 2) If xywh form with general distribution cannot obtain better result, then the best modification is to firstly switch xywh form to tblr form and then apply general distribution and LD. Consequently, whether xywh form + general distribution works or not, our LD benefits for all the regression-based detector.

Pretrained weights

VOC COCO
GFocalV1 teacher R101 pan.baidu pw: ufc8 GFocalV1 + LD R101_R18_1x pan.baidu pw: hj8d
GFocalV1 teacher R101DCN pan.baidu pw: 5qra GFocalV1 + LD R101_R50_1x pan.baidu pw: bvzz
GFocalV1 + LD R101_R18 pan.baidu pw: 1bd3 GFocalV2 + LD R101_R50_2x pan.baidu pw: 3jtq
GFocalV1 + LD R101DCN_R34 pan.baidu pw: thuw GFocalV2 + LD R101DCN_R101_2x pan.baidu pw: zezq
GFocalV1 + LD R101DCN_R101 pan.baidu pw: mp8t GFocalV2 + LD R2N_R101DCN_2x pan.baidu pw: fsbm
GFocalV2 + LD R2N_X101_2x pan.baidu pw: 9vcc
GFocalV2 + Self-LD R2N_R2N_2x pan.baidu pw: 9azn

For any other teacher model, you can download at GFocalV1, GFocalV2 and mmdetection.

Score voting Cluster-DIoU-NMS

We provide Score voting Cluster-DIoU-NMS which is a speed up version of score voting NMS and combination with DIoU-NMS. For GFocalV1 and GFocalV2, Score voting Cluster-DIoU-NMS will bring 0.1-0.3 AP increase, 0.2-0.5 AP75 increase, <=0.4 AP50 decrease and <=1.5 FPS decrease, while it is much faster than score voting NMS in mmdetection. The relevant portion of the config file would be:

# Score voting Cluster-DIoU-NMS
test_cfg = dict(
nms=dict(type='voting_cluster_diounms', iou_threshold=0.6),

# Original NMS
test_cfg = dict(
nms=dict(type='nms', iou_threshold=0.6),

Citation

If you find LD useful in your research, please consider citing:

@Article{zheng2021LD,
  title={Localization Distillation for Object Detection},
  author= {Zhaohui Zheng, Rongguang Ye, Ping Wang, Jun Wang, Dongwei Ren, Wangmeng Zuo},
  journal={arXiv:2102.12252},
  year={2021}
}
Owner
Master student
Automatic labeling, conversion of different data set formats, sample size statistics, model cascade

Simple Gadget Collection for Object Detection Tasks Automatic image annotation Conversion between different annotation formats Obtain statistical info

llt 4 Aug 24, 2022
img2pose: Face Alignment and Detection via 6DoF, Face Pose Estimation

img2pose: Face Alignment and Detection via 6DoF, Face Pose Estimation Figure 1: We estimate the 6DoF rigid transformation of a 3D face (rendered in si

Vítor Albiero 519 Dec 29, 2022
Taking A Closer Look at Domain Shift: Category-level Adversaries for Semantics Consistent Domain Adaptation

Taking A Closer Look at Domain Shift: Category-level Adversaries for Semantics Consistent Domain Adaptation (CVPR2019) This is a pytorch implementatio

Yawei Luo 280 Jan 01, 2023
Towards Understanding Quality Challenges of the Federated Learning: A First Look from the Lens of Robustness

FL Analysis This repository contains the code and results for the paper "Towards Understanding Quality Challenges of the Federated Learning: A First L

3 Oct 17, 2022
System Combination for Grammatical Error Correction Based on Integer Programming

System Combination for Grammatical Error Correction Based on Integer Programming This repository contains the code and scripts that implement the syst

NUS NLP Group 0 Mar 29, 2022
Monify: an Expense tracker Program implemented in a Graphical User Interface that allows users to keep track of their expenses

💳 MONIFY (EXPENSE TRACKER PRO) 💳 Description Monify is an Expense tracker Program implemented in a Graphical User Interface allows users to add inco

Moyosore Weke 1 Dec 14, 2021
Molecular Sets (MOSES): A benchmarking platform for molecular generation models

Molecular Sets (MOSES): A benchmarking platform for molecular generation models Deep generative models are rapidly becoming popular for the discovery

Neelesh C A 3 Oct 14, 2022
Recurrent Scale Approximation (RSA) for Object Detection

Recurrent Scale Approximation (RSA) for Object Detection Codebase for Recurrent Scale Approximation for Object Detection in CNN published at ICCV 2017

Yu Liu (Louis) 239 Dec 28, 2022
(NeurIPS 2020) Wasserstein Distances for Stereo Disparity Estimation

Wasserstein Distances for Stereo Disparity Estimation Accepted in NeurIPS 2020 as Spotlight. [Project Page] Wasserstein Distances for Stereo Disparity

Divyansh Garg 92 Dec 12, 2022
The dataset of tweets pulling from Twitters with keyword: Hydroxychloroquine, location: US, Time: 2020

HCQ_Tweet_Dataset: FREE to Download. Keywords: HCQ, hydroxychloroquine, tweet, twitter, COVID-19 This dataset is associated with the paper "Understand

2 Mar 16, 2022
DeepVoxels is an object-specific, persistent 3D feature embedding.

DeepVoxels is an object-specific, persistent 3D feature embedding. It is found by globally optimizing over all available 2D observations of

Vincent Sitzmann 196 Dec 25, 2022
BMN: Boundary-Matching Network

BMN: Boundary-Matching Network A pytorch-version implementation codes of paper: "BMN: Boundary-Matching Network for Temporal Action Proposal Generatio

qinxin 260 Dec 06, 2022
AAAI 2022 paper - Unifying Model Explainability and Robustness for Joint Text Classification and Rationale Extraction

AT-BMC Unifying Model Explainability and Robustness for Joint Text Classification and Rationale Extraction (AAAI 2022) Paper Prerequisites Install pac

16 Nov 26, 2022
GeneDisco is a benchmark suite for evaluating active learning algorithms for experimental design in drug discovery.

GeneDisco is a benchmark suite for evaluating active learning algorithms for experimental design in drug discovery.

22 Dec 12, 2022
SASM - simple crossplatform IDE for NASM, MASM, GAS and FASM assembly languages

SASM (SimpleASM) - простая кроссплатформенная среда разработки для языков ассемблера NASM, MASM, GAS, FASM с подсветкой синтаксиса и отладчиком. В SA

Dmitriy Manushin 5.6k Jan 06, 2023
Geometric Deep Learning Extension Library for PyTorch

Documentation | Paper | Colab Notebooks | External Resources | OGB Examples PyTorch Geometric (PyG) is a geometric deep learning extension library for

Matthias Fey 16.5k Jan 08, 2023
A distributed deep learning framework that supports flexible parallelization strategies.

FlexFlow FlexFlow is a deep learning framework that accelerates distributed DNN training by automatically searching for efficient parallelization stra

528 Dec 25, 2022
PyTorch implementations of Generative Adversarial Networks.

This repository has gone stale as I unfortunately do not have the time to maintain it anymore. If you would like to continue the development of it as

Erik Linder-Norén 13.4k Jan 08, 2023
learning and feeling SLAM together with hands-on-experiments

modern-slam-tutorial-python Learning and feeling SLAM together with hands-on-experiments 😀 😃 😆 Dependencies Most of the examples are based on GTSAM

Giseop Kim 59 Dec 22, 2022
Official Implementation of "LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks"

LUNAR Official Implementation of "LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks" Adam Goodge, Bryan Hooi, Ng See Kiong and

Adam Goodge 25 Dec 28, 2022