LBBA-boosted WSOD

Overview

LBBA-boosted WSOD

Summary

Our code is based on ruotianluo/pytorch-faster-rcnn and WSCDN

Sincerely thanks for your resources.

Newer version of our code (based on Detectron 2) work in progress.

Hardware

We use one RTX 2080Ti GPU (11GB) to train and evaluate our method, GPU with larger memory is better (e.g., TITAN RTX with 24GB memory)

Requirements

  • Python 3.6 or higher
  • CUDA 10.1 with cuDNN 7.6.2
  • PyTorch 1.2.0
  • numpy 1.18.1
  • opencv 3.4.2

We provide a full requirements.txt (namely lbba_requirements.txt) in the workspace (lbba_boosted_wsod directory).

Additional resources

Google Drive

Description

  • selective_search_data: precomputed proposals of VOC 2007/2012
  • pretrained_models/imagenet_pretrain: imagenet pretrained models of WSOD backbone/LBBA backbone
  • pretrained_models/pretrained_on_wsddn: pretrained WSOD network of VOC 2007/2012, using this pretrained model usually converges faster and more stable.
  • models/voc07: our pretrained WSOD
  • models/lbba: our pretrained LBBA
  • codes_zip: our code template of LBBA training procedure and LBBA-boosted WSOD training procedure

Prepare

Environment

We use Anaconda to construct our experimental environment.

Install all required packages (or simply follow lbba_requirements.txt).

Essential Data

We have initialized all directories with gitkeep files.

first, cd lbba_boosted_wsod

then, download selective_search_data/* into data/selective_search_data

download pretrained_models/imagenet_pretrain/* into data/imagenet_weights

download pretrained_models/pretrained_on_wsddn/* into data/wsddn_weights

Datasets

Same with rbgirshick/py-faster-rcnn

For example, PASCAL VOC 2007 dataset

  1. Download the training, validation, test data and VOCdevkit

    wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtrainval_06-Nov-2007.tar
    wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtest_06-Nov-2007.tar
    wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCdevkit_08-Jun-2007.tar
  2. Extract all of these tars into one directory named VOCdevkit

    tar xvf VOCtrainval_06-Nov-2007.tar
    tar xvf VOCtest_06-Nov-2007.tar
    tar xvf VOCdevkit_08-Jun-2007.tar
  3. It should have this basic structure

    $VOCdevkit/                           # development kit
    $VOCdevkit/VOCcode/                   # VOC utility code
    $VOCdevkit/VOC2007                    # image sets, annotations, etc.
    # ... and several other directories ...
  4. Create symlinks for the PASCAL VOC dataset

    cd $FRCN_ROOT/data
    ln -s $VOCdevkit VOCdevkit2007

Evaluate our WSOD

Download models/voc07/voc07_55.8.pth to lbba_boosted_wsod/

./test_voc07.sh 0 pascal_voc vgg16 voc07_55.8.pth

Note that different environments might result in a slight performance drop. For example, we obtain 55.8 mAP with CUDA 10.1 but obtain 55.5 mAP using the same code with CUDA 11.

Train WSOD

Download models/lbba/lbba_final.pth (or lbba_init.pth) to lbba_boosted_wsod/

bash train_wsod.sh 1 pascal_voc vgg16 voc07_wsddn_pre lbba_final.pth

Note that we provide different LBBA checkpoints (initialization stage, final stage, or even one-class adjuster mentioned in the suppl.).

Citation

@InProceedings{Dong_2021_ICCV,
    author    = {Dong, Bowen and Huang, Zitong and Guo, Yuelin and Wang, Qilong and Niu, Zhenxing and Zuo, Wangmeng},
    title     = {Boosting Weakly Supervised Object Detection via Learning Bounding Box Adjusters},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
    month     = {October},
    year      = {2021},
    pages     = {2876-2885}
}
Owner
Martin Dong
HIT student, major in Computer Science and Technology. CS.CV, object detection, segmentation, generation.
Martin Dong
Measuring if attention is explanation with ROAR

NLP ROAR Interpretability Official code for: Evaluating the Faithfulness of Importance Measures in NLP by Recursively Masking Allegedly Important Toke

Andreas Madsen 19 Nov 13, 2022
Multi-view 3D reconstruction using neural rendering. Unofficial implementation of UNISURF, VolSDF, NeuS and more.

Volume rendering + 3D implicit surface Showcase What? previous: surface rendering; now: volume rendering previous: NeRF's volume density; now: implici

Jianfei Guo 682 Jan 04, 2023
Learning 3D Part Assembly from a Single Image

Learning 3D Part Assembly from a Single Image This repository contains a PyTorch implementation of the paper: Learning 3D Part Assembly from A Single

18 Dec 21, 2022
学习 python3 以来写的一些垃圾玩具……

和东哥做兄弟 Author: chiupam 版权 未经本人同意,仓库内所有资源文件,禁止任何公众号、自媒体、开发者进行任何形式的转载、发布、搬运。 声明 这不是一个开源项目,只是把 GitHub 当作一个代码的存储空间,本项目不接受任何开源要求。 仅用于学习研究,禁止用于商业用途,不能保证其合法性

Chiupam 67 Mar 26, 2022
ONNX-GLPDepth - Python scripts for performing monocular depth estimation using the GLPDepth model in ONNX

ONNX-GLPDepth - Python scripts for performing monocular depth estimation using the GLPDepth model in ONNX

Ibai Gorordo 18 Nov 06, 2022
[ICCV 2021 Oral] Deep Evidential Action Recognition

DEAR (Deep Evidential Action Recognition) Project | Paper & Supp Wentao Bao, Qi Yu, Yu Kong International Conference on Computer Vision (ICCV Oral), 2

Wentao Bao 80 Jan 03, 2023
Source code for 2021 ICCV paper "In-the-Wild Single Camera 3D Reconstruction Through Moving Water Surfaces"

In-the-Wild Single Camera 3D Reconstruction Through Moving Water Surfaces This is the PyTorch implementation for 2021 ICCV paper "In-the-Wild Single C

27 Dec 06, 2022
Kaggle DSTL Satellite Imagery Feature Detection

Kaggle DSTL Satellite Imagery Feature Detection

Konstantin Lopuhin 206 Oct 29, 2022
Paper: Cross-View Kernel Similarity Metric Learning Using Pairwise Constraints for Person Re-identification

Cross-View Kernel Similarity Metric Learning Using Pairwise Constraints for Person Re-identification T M Feroz Ali, Subhasis Chaudhuri, ICVGIP-20-21

T M Feroz Ali 3 Jun 17, 2022
Company clustering with K-means/GMM and visualization with PCA, t-SNE, using SSAN relation extraction

RE results graph visualization and company clustering Installation pip install -r requirements.txt python -m nltk.downloader stopwords python3.7 main.

Jieun Han 1 Oct 06, 2022
Classify music genre from a 10 second sound stream using a Neural Network.

MusicGenreClassification Academic research in the field of Deep Learning (Deep Neural Networks) and Sound Processing, Tel Aviv University. Featured in

Matan Lachmish 453 Dec 27, 2022
This is my codes that can visualize the psnr image in testing videos.

CVPR2018-Baseline-PSNRplot This is my codes that can visualize the psnr image in testing videos. Future Frame Prediction for Anomaly Detection – A New

Wenhao Yang 12 May 29, 2021
PyTorch Implementation of SSTNs for hyperspectral image classifications from the IEEE T-GRS paper "Spectral-Spatial Transformer Network for Hyperspectral Image Classification: A FAS Framework."

PyTorch Implementation of SSTN for Hyperspectral Image Classification Paper links: SSTN published on IEEE T-GRS. Also, you can directly find the imple

Zilong Zhong 54 Dec 19, 2022
Doing the asl sign language classification on static images using graph neural networks.

SignLangGNN When GNNs 💜 MediaPipe. This is a starter project where I tried to implement some traditional image classification problem i.e. the ASL si

10 Nov 09, 2022
A 3D Dense mapping backend library of SLAM based on taichi-Lang designed for the aerial swarm.

TaichiSLAM This project is a 3D Dense mapping backend library of SLAM based Taichi-Lang, designed for the aerial swarm. Intro Taichi is an efficient d

XuHao 230 Dec 19, 2022
Pytorch implementation of our paper under review — Lottery Jackpots Exist in Pre-trained Models

Lottery Jackpots Exist in Pre-trained Models (Paper Link) Requirements Python = 3.7.4 Pytorch = 1.6.1 Torchvision = 0.4.1 Reproduce the Experiment

Yuxin Zhang 27 Jun 28, 2022
LiDAR Distillation: Bridging the Beam-Induced Domain Gap for 3D Object Detection

LiDAR Distillation Paper | Model LiDAR Distillation: Bridging the Beam-Induced Domain Gap for 3D Object Detection Yi Wei, Zibu Wei, Yongming Rao, Jiax

Yi Wei 75 Dec 22, 2022
Lane follower: Lane-detector (OpenCV) + Object-detector (YOLO5) + CAN-bus

Lane Follower This code is for the lane follower, including perception and control, as shown below. Environment Hardware Industrial Camera Intel-NUC(1

Siqi Fan 3 Jul 07, 2022
A framework for analyzing computer vision models with simulated data

3DB: A framework for analyzing computer vision models with simulated data Paper Quickstart guide Blog post Installation Follow instructions on: https:

3DB 112 Jan 01, 2023
Pure python implementations of popular ML algorithms.

Minimal ML algorithms This repo includes minimal implementations of popular ML algorithms using pure python and numpy. The purpose of these notebooks

Alexis Gidiotis 3 Jan 10, 2022