Single cell current best practices tutorial case study for the paper:Luecken and Theis, "Current best practices in single-cell RNA-seq analysis: a tutorial"

Overview

Scripts for "Current best-practices in single-cell RNA-seq: a tutorial"

image

This repository is complementary to the publication:

M.D. Luecken, F.J. Theis, "Current best practices in single-cell RNA-seq analysis: a tutorial", Molecular Systems Biology 15(6) (2019): e8746

The paper was recommended on F1000 prime as being of special significance in the field.

Access the recommendation on F1000Prime

The repository contains:

  • scripts to generate the paper figures
  • a case study which complements the manuscript
  • the code for the marker gene detection study from the supplementary material

The main part of this repository is a case study where the best-practices established in the manuscript are applied to a mouse intestinal epithelium regions dataset from Haber et al., Nature 551 (2018) available from the GEO under GSE92332. This case study can be found in different versions in the latest_notebook/ and old_releases/ directories.

The scripts in the plotting_scripts/ folder reproduce the figures that are shown in the manuscript and the supplementary materials. These scripts contain comments to explain each step. Each figure that does not have a corresponding script in the plotting_scripts/ folder was taken from the case study or the marker gene study.

In case of questions or issues, please get in touch by posting an issue in this repository.

If the materials in this repo are of use to you, please consider citing the above publication.

Environment set up

A docker container with a working sc-tutorial environment is now available here thanks to Leander Dony. If you would like to set up the environment via conda or manually outside of the docker container, please follow the instructions below.

To run the tutorial case study, several packages must be installed. As both R and python packages are required, we prefer using a conda environment. To facilitate the setup of a conda environment, we have provided the sc_tutorial_environment.yml file, which contains all conda and pip installable dependencies. R dependencies, which are not already available as conda packages, must be installed into the environment itself.

To set up a conda environment, the following instructions must be followed.

  1. Set up the conda environment from the sc_tutorial_environment.yml file.

    conda env create -f sc_tutorial_environment.yml
    
  2. Ensure that the environment can find the gsl libraries from R. This is done by setting the CFLAGS and LDFLAGS environment variables (see https://bit.ly/2CjJsgn). Here we set them so that they are correctly set every time the environment is activated.

    cd YOUR_CONDA_ENV_DIRECTORY
    mkdir -p ./etc/conda/activate.d
    mkdir -p ./etc/conda/deactivate.d
    touch ./etc/conda/activate.d/env_vars.sh
    touch ./etc/conda/deactivate.d/env_vars.sh
    

    Where YOUR_CONDA_ENV_DIRECTORY can be found by running conda info --envs and using the directory that corresponds to your conda environment name (default: sc-tutorail).

    WHILE NOT IN THE ENVIRONMENT(!!!!) open the env_vars.sh file at ./etc/conda/activate.d/env_vars.sh and enter the following into the file:

    #!/bin/sh
    
    CFLAGS_OLD=$CFLAGS
    export CFLAGS_OLD
    export CFLAGS="`gsl-config --cflags` ${CFLAGS_OLD}"
     
    LDFLAGS_OLD=$LDFLAGS
    export LDFLAGS_OLD
    export LDFLAGS="`gsl-config --libs` ${LDFLAGS_OLD}"
    

    Also change the ./etc/conda/deactivate.d/env_vars.sh file to:

    #!/bin/sh
     
    CFLAGS=$CFLAGS_OLD
    export CFLAGS
    unset CFLAGS_OLD
     
    LDFLAGS=$LDFLAGS_OLD
    export LDFLAGS
    unset LDFLAGS_OLD
    

    Note again that these files should be written WHILE NOT IN THE ENVIRONMENT. Otherwise you may overwrite the CFLAGS and LDFLAGS environment variables in the base environment!

  3. Enter the environment by conda activate sc-tutorial or conda activate ENV_NAME if you changed the environment name in the sc_tutorial_environment.yml file.

  4. Open R and install the dependencies via the commands:

    install.packages(c('devtools', 'gam', 'RColorBrewer', 'BiocManager'))
    update.packages(ask=F)
    BiocManager::install(c("scran","MAST","monocle","ComplexHeatmap","slingshot"), version = "3.8")
    

These steps should set up an environment to perform single cell analysis with the tutorial workflow on a Linux system. Please note that we have encountered issues with conda environments on Mac OS. When using Mac OS we recommend installing the packages without conda using separately installed python and R versions. Alternatively, you can try using the base conda environment and installing all packages as described in the conda_env_instructions_for_mac.txt file. In the base environment, R should be able to find the relevant gsl libraries, so LDFLAGS and CFLAGS should not need to be set.

Also note that conda and pip doesn't always play nice together. Conda developers have suggested first installing all conda packages and then installing pip packages on top of this where conda packages are not available. Thus, installing further conda packages into the environment may cause issues. Instead, start a new environment and reinstall all conda packages first.

If you prefer to set up an environment manually, a list of all package requirements are given at the end of this document.

Downloading the data

As mentioned above the data for the case study comes from GSE92332. To run the case study as shown, you must download this data and place it in the correct folder. Unpacking the data requires tar and gunzip, which should already be available on most systems. If you are cloning the github repository and have the case study script in a latest_notebook/ folder, then from the location where you store the case study ipynb file, this can be done via the following commands:

cd ../  #To get to the main github repo folder
mkdir -p data/Haber-et-al_mouse-intestinal-epithelium/
cd data/Haber-et-al_mouse-intestinal-epithelium/
wget ftp://ftp.ncbi.nlm.nih.gov/geo/series/GSE92nnn/GSE92332/suppl/GSE92332_RAW.tar
mkdir GSE92332_RAW
tar -C GSE92332_RAW -xvf GSE92332_RAW.tar
gunzip GSE92332_RAW/*_Regional_*

The annotated dataset with which we briefly compare the results at the end of the notebook, is available from the same GEO accession ID (GSE92332). It can be obtained using the following command:

cd data/Haber-et-al_mouse-intestinal-epithelium/
wget ftp://ftp.ncbi.nlm.nih.gov/geo/series/GSE92nnn/GSE92332/suppl/GSE92332_Regional_UMIcounts.txt.gz
gunzip GSE92332_Regional_UMIcounts.txt.gz

Case study notes

We have noticed that results such as visualization, dimensionality reduction, and clustering (and hence all downstream results as well) can give slightly different results on different systems. This has to do with the numerical libraries that are used in the backend. Thus, we cannot guarantee that a rerun of the notebook will generate exactly the same clusters.

While all results are qualitatively similar, the assignment of cells to clusters especialy for stem cells, TA cells, and enterocyte progenitors can differ between runs across systems. To show the diversity that can be expected, we have uploaded shortened case study notebooks to the alternative_clustering_results/ folder.

Note that running sc.pp.pca() with the parameter svd_solver='arpack' drastically reduces the variability between systems, however the output is not exactly the same.

Adapting the pipeline for other datasets:

The pipeline was designed to be easily adaptable to new datasets. However, there are several limitations to the general applicability of the current workflow. When adapting the pipeline for your own dataset please take into account the following:

  1. Sparse data formats are not supported by rpy2 and therefore do not work with any of the integrated R commands. Datasets can be turned into a dense format using the code: adata.X = adata.X.toarray()

  2. The case study assumes that the input data is count data obtained from a single-cell protocol with UMIs. If the input data is full-length read data, then one could consider replacing the normalization method with another method that includes gene length normalization (e.g., TPM).

Manual installation of package requirements

The following packages are required to run the first version of the case study notebook. For further versions see the README.md in the latest_notebook/ and old_releases/ folders.

General:

  • Jupyter notebook
  • IRKernel
  • rpy2
  • R >= 3.4.3
  • Python >= 3.5

Python:

  • scanpy
  • numpy
  • scipy
  • pandas
  • seaborn
  • louvain>=0.6
  • python-igraph
  • gprofiler-official (from Case study notebook 1906 version)
  • python-gprofiler from Valentine Svensson's github (vals/python-gprofiler)
    • only needed for notebooks before version 1906
  • ComBat python implementation from Maren Buettner's github (mbuttner/maren_codes/combat.py)
    • only needed for scanpy versions before 1.3.8 which don't include sc.pp.combat()

R:

  • scater
  • scran
  • MAST
  • gam
  • slingshot (change DESCRIPTION file for R version 3.4.3)
  • monocle 2
  • limma
  • ComplexHeatmap
  • RColorBrewer
  • clusterExperiment
  • ggplot2
  • IRkernel

Possible sources of error in the manual installation:

For R 3.4.3:

When using Slingshot in R 3.4.3, you must pull a local copy of slingshot via the github repository and change the DESCRIPTION file to say R>=3.4.3 instead of R>=3.5.0.

For R >= 3.5 and bioconductor >= 3.7:

The clusterExperiment version that comes for bioconductor 3.7 has slightly changed naming convention. clusterExperiment() is now called ClusterExperiment(). The latest version of the notebook includes this change, but when using the original notebook, please note that this may throw an error.

For rpy2 < 3.0.0:

Pandas 0.24.0 is not compatible with rpy2 < 3.0.0. When using old versions of rpy2, please downgrade pandas to 0.23.X. Please also note that Pandas 0.24.0 requires anndata version 0.6.18 and scanpy version > 1.37.0.

For enrichment analysis with g:profiler:

Ensure that the correct g:profiler package is used for the notebook. Notebooks until 1904 use python-gprofiler from valentine svensson's github, and Notebooks from 1906 use the gprofiler-official package from the g:profiler team.

If not R packages can be found:

Ensure that IRkernel has linked the correct version of R with your jupyter notebook. Check instructions at https://github.com/IRkernel/IRkernel.

Owner
Theis Lab
Institute of Computational Biology
Theis Lab
PyTorch implementation of Spiking Neural Networks trained on surrogate gradient & BPTT using snntorch.

snn-localization repo PyTorch implementation of Spiking Neural Networks trained on surrogate gradient & BPTT using snntorch. Install Dependencies Orig

Sami BARCHID 1 Jan 06, 2022
Code Repo for the ACL21 paper "Common Sense Beyond English: Evaluating and Improving Multilingual LMs for Commonsense Reasoning"

Common Sense Beyond English: Evaluating and Improving Multilingual LMs for Commonsense Reasoning This is the Github repository of our paper, "Common S

INK Lab @ USC 19 Nov 30, 2022
Unified Pre-training for Self-Supervised Learning and Supervised Learning for ASR

UniSpeech The family of UniSpeech: UniSpeech (ICML 2021): Unified Pre-training for Self-Supervised Learning and Supervised Learning for ASR UniSpeech-

Microsoft 282 Jan 09, 2023
🛠 All-in-one web-based IDE specialized for machine learning and data science.

All-in-one web-based development environment for machine learning Getting Started • Features & Screenshots • Support • Report a Bug • FAQ • Known Issu

Machine Learning Tooling 2.9k Jan 09, 2023
This is an example of a reproducible modelling project

An example of a reproducible modelling project What are we doing? This example was created for the 2021 fall lecture series of Stanford's Center for O

Armin Thomas 2 Oct 26, 2021
Demystifying How Self-Supervised Features Improve Training from Noisy Labels

Demystifying How Self-Supervised Features Improve Training from Noisy Labels This code is a PyTorch implementation of the paper "[Demystifying How Sel

<a href=[email protected]"> 4 Oct 14, 2022
Pytorch implementation of the DeepDream computer vision algorithm

deep-dream-in-pytorch Pytorch (https://github.com/pytorch/pytorch) implementation of the deep dream (https://en.wikipedia.org/wiki/DeepDream) computer

102 Dec 05, 2022
Official repo for our 3DV 2021 paper "Monocular 3D Reconstruction of Interacting Hands via Collision-Aware Factorized Refinements".

Monocular 3D Reconstruction of Interacting Hands via Collision-Aware Factorized Refinements Yu Rong, Jingbo Wang, Ziwei Liu, Chen Change Loy Paper. Pr

Yu Rong 41 Dec 13, 2022
A python library for highly configurable transformers - easing model architecture search and experimentation.

A python library for highly configurable transformers - easing model architecture search and experimentation.

Anthony Fuller 51 Nov 20, 2022
Official Repository for the ICCV 2021 paper "PixelSynth: Generating a 3D-Consistent Experience from a Single Image"

PixelSynth: Generating a 3D-Consistent Experience from a Single Image (ICCV 2021) Chris Rockwell, David F. Fouhey, and Justin Johnson [Project Website

Chris Rockwell 95 Nov 22, 2022
mbrl-lib is a toolbox for facilitating development of Model-Based Reinforcement Learning algorithms.

mbrl-lib is a toolbox for facilitating development of Model-Based Reinforcement Learning algorithms. It provides easily interchangeable modeling and planning components, and a set of utility function

Facebook Research 724 Jan 04, 2023
DIVeR: Deterministic Integration for Volume Rendering

DIVeR: Deterministic Integration for Volume Rendering This repo contains the training and evaluation code for DIVeR. Setup python 3.8 pytorch 1.9.0 py

64 Dec 27, 2022
AI grand challenge 2020 Repo (Speech Recognition Track)

KorBERT를 활용한 한국어 텍스트 기반 위협 상황인지(2020 인공지능 그랜드 챌린지) 본 프로젝트는 ETRI에서 제공된 한국어 korBERT 모델을 활용하여 폭력 기반 한국어 텍스트를 분류하는 다양한 분류 모델들을 제공합니다. 본 개발자들이 참여한 2020 인공지

Young-Seok Choi 23 Jan 25, 2022
Simple improvement of VQVAE that allow to generate x2 sized images compared to baseline

vqvae_dwt_distiller.pytorch Simple improvement of VQVAE that allow to generate x2 sized images compared to baseline. It allows to generate 512x512 ima

Sergei Belousov 25 Jul 19, 2022
Official codebase for Decision Transformer: Reinforcement Learning via Sequence Modeling.

Decision Transformer Lili Chen*, Kevin Lu*, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas†, and Igor M

Kevin Lu 1.4k Jan 07, 2023
CNNs for Sentence Classification in PyTorch

Introduction This is the implementation of Kim's Convolutional Neural Networks for Sentence Classification paper in PyTorch. Kim's implementation of t

Shawn Ng 956 Dec 19, 2022
Official PyTorch Implementation of paper "NeLF: Neural Light-transport Field for Single Portrait View Synthesis and Relighting", EGSR 2021.

NeLF: Neural Light-transport Field for Single Portrait View Synthesis and Relighting Official PyTorch Implementation of paper "NeLF: Neural Light-tran

Ken Lin 38 Dec 26, 2022
Code and Datasets from the paper "Self-supervised contrastive learning for volcanic unrest detection from InSAR data"

Code and Datasets from the paper "Self-supervised contrastive learning for volcanic unrest detection from InSAR data" You can download the pretrained

Bountos Nikos 3 May 07, 2022
Air Pollution Prediction System using Linear Regression and ANN

AirPollution Pollution Weather Prediction System: Smart Outdoor Pollution Monitoring and Prediction for Healthy Breathing and Living Publication Link:

Dr Sharnil Pandya, Associate Professor, Symbiosis International University 19 Feb 07, 2022
Official repository for the ICLR 2021 paper Evaluating the Disentanglement of Deep Generative Models with Manifold Topology

Official repository for the ICLR 2021 paper Evaluating the Disentanglement of Deep Generative Models with Manifold Topology Sharon Zhou, Eric Zelikman

Stanford Machine Learning Group 34 Nov 16, 2022