Simulating Sycamore quantum circuits classically using tensor network algorithm.

Overview

Simulating the Sycamore quantum supremacy circuit

This repo contains data we have obtained in simulating the Sycamore quantum supremacy circuits with $n=53$ qubits, $m=20$ cycles using the tensor network method proposed in arXiv:2103.03074.

We plan to release the code soon.

Explanation of data

  1. data/circuit_n53_m20_s0_e0_pABCDCDAB.py is the circuit file which has been download from the Google's data repository for the Sycamore circuits.
  2. data/bipartition_n53_m20_s0_ABCD_s24_simplify_.txt is the initial bipartition of the simplified tensor network corresponding to Sycamore circuit with 53 qubits, 20 cycles, seed 0, elide 0 and ABCDCDAB sequence. There are two lines in the file, the first line indicates the tail partition which includes 21 open qubits, while the second line includes the head partition with 32 closed qubits. The simplification of the tensor network is done by sequentially contracting tensors with 2 or less dimensions.
  3. data/n53_m20_s0_ABCD_s24_simplify_gpulimit_30_edges.txt contains the 23 slicing edges which splits the overall contraction task into $2^{23}$ subtasks, each of which has space complexity $2^{30}$ hence can be contracted using fit into 32G memory.
  4. data/n53_m20_s0_ABCD_s24_simplify_gpulimit_30_ordernew.txt includes the contraction order. For each edge in the contraction order, say $i, j$, the $i$th and $j$th tensor in the head partition will be contracted by tracing out the shared indices. Then the resulting tensor will be put back into the $i$th position.
  5. vector.pt contains the cut tensor of of the head partition whose overall dimension is $2^{23}$ and the annotations of corresponding dimensions. The file is saved using pytorch, one can use torch.load to load the data.
  6. The obtained $2^{21}$ samples for the Sycamore circuits with $n=53$ qubits and $m=20$ cycles and their probabilities and amplitudes are listed in probs.txt file. Notice that the configuration we assigned to all closed qubits are fixed to $\underbrace{0,0,0,\cdots,0}_{32}$, and the open qubit ids are 11, 12, 13, 19, 20, 21, 22, 23, 28, 29, 30, 31, 32, 37, 38, 39, 40, 41, 44, 45, 46.

Notice

We noticed that in our paper arXiv:2103.03074 we have a misprint in the first row of Tab.III, where the amplitude should be |amplitude|. Neverthless, we put the refined table below.

image-20210308101302534

The $2^{21}$ bitstrings with amplitudes and probabilities can be download here.

Owner
Feng Pan
PHD candidate on theoretical physics. Personal interest in learning theory by statistical physics approaches.
Feng Pan
Code for "Learning Graph Cellular Automata"

Learning Graph Cellular Automata This code implements the experiments from the NeurIPS 2021 paper: "Learning Graph Cellular Automata" Daniele Grattaro

Daniele Grattarola 37 Oct 26, 2022
A curated list of the top 10 computer vision papers in 2021 with video demos, articles, code and paper reference.

The Top 10 Computer Vision Papers of 2021 The top 10 computer vision papers in 2021 with video demos, articles, code, and paper reference. While the w

Louis-François Bouchard 118 Dec 21, 2022
3D Human Pose Machines with Self-supervised Learning

3D Human Pose Machines with Self-supervised Learning Keze Wang, Liang Lin, Chenhan Jiang, Chen Qian, and Pengxu Wei, “3D Human Pose Machines with Self

Chenhan Jiang 398 Dec 20, 2022
Official code for "On the Frequency Bias of Generative Models", NeurIPS 2021

Frequency Bias of Generative Models Generator Testbed Discriminator Testbed This repository contains official code for the paper On the Frequency Bias

35 Nov 01, 2022
Bringing Characters to Life with Computer Brains in Unity

AI4Animation: Deep Learning for Character Control This project explores the opportunities of deep learning for character animation and control as part

Sebastian Starke 5.5k Jan 04, 2023
ISBI 2022: Cross-level Contrastive Learning and Consistency Constraint for Semi-supervised Medical Image.

Cross-level Contrastive Learning and Consistency Constraint for Semi-supervised Medical Image Introduction This repository contains the PyTorch implem

25 Nov 09, 2022
Pytorch implementation of paper "Efficient Nearest Neighbor Language Models" (EMNLP 2021)

Pytorch implementation of paper "Efficient Nearest Neighbor Language Models" (EMNLP 2021)

Junxian He 57 Jan 01, 2023
We will see a basic program that is basically a hint to brute force attack to crack passwords. In other words, we will make a program to Crack Any Password Using Python. Show some ❤️ by starring this repository!

Crack Any Password Using Python We will see a basic program that is basically a hint to brute force attack to crack passwords. In other words, we will

Ananya Chatterjee 11 Dec 03, 2022
Implementation of 'lightweight' GAN, proposed in ICLR 2021, in Pytorch. High resolution image generations that can be trained within a day or two

512x512 flowers after 12 hours of training, 1 gpu 256x256 flowers after 12 hours of training, 1 gpu Pizza 'Lightweight' GAN Implementation of 'lightwe

Phil Wang 1.5k Jan 02, 2023
An AutoML Library made with Optuna and PyTorch Lightning

An AutoML Library made with Optuna and PyTorch Lightning Installation Recommended pip install -U gradsflow From source pip install git+https://github.

GradsFlow 294 Dec 17, 2022
Tutorial to set up TensorFlow Object Detection API on the Raspberry Pi

A tutorial showing how to set up TensorFlow's Object Detection API on the Raspberry Pi

Evan 1.1k Dec 26, 2022
Source code to accompany Defunctland's video "FASTPASS: A Complicated Legacy"

Shapeland Simulator Source code to accompany Defunctland's video "FASTPASS: A Complicated Legacy" Download the video at https://www.youtube.com/watch?

TouringPlans.com 70 Dec 14, 2022
Revitalizing CNN Attention via Transformers in Self-Supervised Visual Representation Learning

Revitalizing CNN Attention via Transformers in Self-Supervised Visual Representation Learning This repository is the official implementation of CARE.

ChongjianGE 89 Dec 02, 2022
Code and data for ImageCoDe, a contextual vison-and-language benchmark

ImageCoDe This repository contains code and data for ImageCoDe: Image Retrieval from Contextual Descriptions. Data All collected descriptions for the

McGill NLP 27 Dec 02, 2022
SAFL: A Self-Attention Scene Text Recognizer with Focal Loss

SAFL: A Self-Attention Scene Text Recognizer with Focal Loss This repository implements the SAFL in pytorch. Installation conda env create -f environm

6 Aug 24, 2022
Animatable Neural Radiance Fields for Modeling Dynamic Human Bodies

To make the comparison with Animatable NeRF easier on the Human3.6M dataset, we save the quantitative results at here, which also contains the results of other methods, including Neural Body, D-NeRF,

ZJU3DV 359 Jan 08, 2023
Human annotated noisy labels for CIFAR-10 and CIFAR-100.

Dataloader for CIFAR-N CIFAR-10N noise_label = torch.load('./data/CIFAR-10_human.pt') clean_label = noise_label['clean_label'] worst_label = noise_lab

<a href=[email protected]"> 117 Nov 30, 2022
Permute Me Softly: Learning Soft Permutations for Graph Representations

Permute Me Softly: Learning Soft Permutations for Graph Representations

Giannis Nikolentzos 7 Jul 10, 2022
Recreate CenternetV2 based on MMDET.

Introduction This project is trying to Recreate CenternetV2 based on MMDET, which is proposed in paper Probabilistic two-stage detection. This project

25 Dec 09, 2022
Optimizes image files by converting them to webp while also updating all references.

About Optimizes images by (re-)saving them as webp. For every file it replaced it automatically updates all references. Works on single files as well

Watermelon Wolverine 18 Dec 23, 2022