A smaller subset of 10 easily classified classes from Imagenet, and a little more French

Overview

Imagenette

šŸŽ¶ Imagenette, gentille imagenette,

Imagenette, je te plumerai. šŸŽ¶

(Imagenette theme song thanks to Samuel Finlayson)


NB:

  • Versions of Imagenette and Imagewoof with noisy labels are now available as CSV files that come with the dataset.
  • The Imagenette and Imagewoof datasets have recently (Dec 6 2019) changed. They now have a 70/30 train/valid split.
  • The old versions (which have a much smaller validation set) are still available with the same URLs, but the URLs below point to the new versions.
  • We've also added the new Imageē½‘ dataset (see below for details). The leaderboards below been updated using the new datasets, using a strong. Can you beat it?...

The Datasets

Imagenette

Imagenette is a subset of 10 easily classified classes from Imagenet (tench, English springer, cassette player, chain saw, church, French horn, garbage truck, gas pump, golf ball, parachute).

'Imagenette' is pronounced just like 'Imagenet', except with a corny inauthentic French accent. If you've seen Peter Sellars in The Pink Panther, then think something like that. It's important to ham up the accent as much as possible, otherwise people might not be sure whether you're refering to "Imagenette" or "Imagenet". (Note to native French speakers: to avoid confusion, be sure to use a corny inauthentic American accent when saying "Imagenet". Think something like the philosophy restaurant skit from Monty Python's The Meaning of Life.)

The '320 px' and '160 px' versions have their shortest side resized to that size, with their aspect ratio maintained.

The dataset also comes with a CSV file with 1%, 5%, 25%, and 50% of the labels randomly changed to an incorrect label. More information about the noisy labels are provided in the "noisy_labels" folder. Leaderboards for 5% noise and 50% noise are maintained below.

Too easy for you? In that case, you might want to try Imagewoof.

Imagewoof

Imagewoof is a subset of 10 classes from Imagenet that aren't so easy to classify, since they're all dog breeds. The breeds are: Australian terrier, Border terrier, Samoyed, Beagle, Shih-Tzu, English foxhound, Rhodesian ridgeback, Dingo, Golden retriever, Old English sheepdog. (No we will not enter in to any discussion in to whether a dingo is in fact a dog. Any suggestions to the contrary are un-Australian. Thank you for your cooperation.)

The dataset also comes with a CSV file with 1%, 5%, 25%, and 50% of the labels randomly changed to an incorrect label. More information about the noisy labels are provided in the "noisy_labels" folder.

Imagewoof too easy for you too?!? Then get your hands on Imageē½‘.

Imageē½‘

Imageē½‘ is pronounced "Imagewang"; ē½‘ means "net" in Chinese! Imageē½‘ contains Imagenette and Imagewoof combined, but with some twists that make it into a tricky semi-supervised unbalanced classification problem:

  • The validation set is the same as Imagewoof (i.e. 30% of Imagewoof images); there are no Imagenette images in the validation set (they're all in the training set)

  • Only 10% of Imagewoof images are in the training set!

  • The remaining are in the unsup ("unsupervised") directory, and you can not use their labels in training!

  • It's even hard to type and hard to say!

  • Full size download;

  • 320 px download;

  • 160 px download.

Why Imagenette?

I (Jeremy Howard, that is) mainly made Imagenette because I wanted a small vision dataset I could use to quickly see if my algorithm ideas might have a chance of working. They normally don't, but testing them on Imagenet takes a really long time for me to find that out, especially because I'm interested in algorithms that perform particularly well at the end of training.

But I think this can be a useful dataset for others as well.

Usage

If you are already using the fastai library, you can download and access these quickly with commands like:

path = untar_data(URLs.IMAGENETTE_160)

where path now stores the destination to ImageNette-160.

For researchers

  • Try to create a classifier that's as accurate as possible under various constraints (we'll keep leaderboards below, submit your PR with a link to your repo or gist!), such as:
    • Within a certain number of epochs: 5, 20, 40, 160
    • Within a certain budget on AWS or GCP (use spot or interruptible instances to save money): $0.05, $0.10, $0.25, $0.50, $1.00, $2.00
  • Experiment with other low resource problems like transfer learning from small datasets, using semi-supervised learning to help classify small datasets, etc
  • Test the impact of using different sized images, either separately, or together as part of training (i.e. progressive resizing)
  • Compare your algorithm on easy vs hard small datasets, which are otherwise very similar (Imagenette vs Imagewoof)
  • Ensure that you start from random weights - not from pretrained weights.

For students

  • Practice your modeling skills on a dataset that's very similar to Imagenet, but much less expensive to deal with
  • Do send me a PR with your other applications for this dataset!

Tips

  • Because there are only 10 categories, the usual "top 5 accuracy" isn't so interesting. So you should generally report top 1 accuracy when using Imagenette
  • The best approaches to 5 epoch training often don't scale well to more epochs
  • Data augmentation like mixup tends to only help for 80+ epochs

Leaderboard

Generally you'll see +/- 1% differences from run to run since it's quite a small validation set. So please only send in contributions that are higher than the reported accuracy >80% of the time. Here's the rules:

  • No inference time tricks, e.g. no: TTA, validation size > train size
  • Must start with random weights
  • Must be one of the size/#epoch combinations listed in the table
  • If you have the resources to do so, try to get an average of 5 runs, to get a stable comparison. Use the "# Runs" column to include this (note that train_imagenette.py provides a --runs flag to make this easy)
  • In the URL column include a link to a notebook, blog post, gist, or similar which explains what you did to get your result, and includes the code you used (or a link to it), including the exact commit, so that others can reproduce your result.

Imagenette Leaderboard

Size (px) Epochs URL Accuracy # Runs
128 5 fastai2 train_imagenette.py 2020-10 + MaxBlurPool + tuned hyperparams 87.43% 5, mean
128 20 fastai2 train_imagenette.py 2020-01 + MaxBlurPool 91.57% 5, mean
128 80 fastai2 train_imagenette.py 2020-01 93.55% 1
128 200 fastai2 train_imagenette.py 2020-01 94.24% 1
192 5 fastai2 train_imagenette.py 2020-01 + MaxBlurPool 86.76% 5, mean
192 20 fastai2 train_imagenette.py 2020-01 + MaxBlurPool 92.50% 5, mean
192 80 fastai2 train_imagenette.py 2020-01 94.50% 1
192 200 fastai2 train_imagenette.py 2020-01 95.03% 1
256 5 fastai2 train_imagenette.py 2020-01 + MaxBlurPool 86.85% 5, mean
256 20 fastai2 train_imagenette.py 2020-01 + MaxBlurPool 93.53% 5, mean
256 80 fastai2 train_imagenette.py 2020-01 94.90% 1
256 200 fastai2 train_imagenette.py 2020-01 95.11% 1

Imagenette w/Label Noise = 5%

Size (px) Epochs URL Accuracy # Runs
128 5 baseline 83.44% 1
128 20 baseline 89.53% 1
128 80 baseline 89.30% 1
128 200 baseline 90.04% 1
192 5 baseline 84.13% 1
192 20 baseline 90.65% 1
192 80 baseline 91.01% 1
192 200 baseline 91.08% 1
256 5 SESEMI 88.87% Ā± 0.67 5,meanĀ±std
256 20 baseline 91.39% 1
256 80 SESEMI 92.95% Ā± 0.12 3,meanĀ±std
256 200 SESEMI 93.96% Ā± 0.23 3,meanĀ±std

Imagenette w/Label Noise = 50%

Size (px) Epochs URL Accuracy # Runs
128 5 baseline 66.60% 1
128 20 baseline 79.36% 1
128 80 baseline 50.80% 1
128 200 baseline 52.18% 1
192 5 baseline 67.54% 1
192 20 baseline 79.34% 1
192 80 baseline 52.51% 1
192 200 baseline 53.71% 1
256 5 SESEMI 76.72% Ā± 0.83 5,meanĀ±std
256 20 baseline 79.21% 1
256 80 SESEMI 57.76% Ā± 0.39 3,meanĀ±std
256 200 SESEMI 61.48% Ā± 0.33 3,meanĀ±std

Imagewoof Leaderboard

Size (px) Epochs URL Accuracy # Runs
128 5 depthwise(x6) 76.61% 5, mean
128 20 depthwise(x4) 86.27% 5, mean
128 80 depthwise(x4) 87.83% 1
128 200 fastai2 train_imagenette.py 2020-01 87.20% 1
192 5 depthwise(x4) 81.15% 5, mean
192 20 depthwise(x4) 88.37% 5, mean
192 80 depthwise(x2) 90.30% 1
192 200 fastai2 train_imagenette.py 2020-01 89.54% 1
256 5 Resnet Trick + Mish + Sa + MaxBlurPool 78,84% 5, mean
256 20 Resnet Trick + Mish + Sa + MaxBlurPool 88,58% 5, mean
256 80 fastai2 train_imagenette.py 2020-01 90.48% 1
256 200 fastai2 train_imagenette.py 2020-01 90.38% 1

Imageē½‘ Leaderboard

Size (px) Epochs URL Accuracy # Runs
128 5 SwAV 72.94% 5,mean
128 20 SwAV 72.18% 3,mean
128 80 SwAV 69.53% 1
128 200 SwAV 66.04% 1
192 5 SwAV 77.07% 5,mean
192 20 SwAV 77.81% 3,mean
192 80 SwAV 74.9% 1
192 200 SwAV 71.77% 1
256 5 SwAV 79.56% 5,mean
256 20 SwAV 79.2% 3,mean
256 80 SESEMI 78.41% Ā± 0.39 5,meanĀ±std
256 200 SESEMI 79.27% Ā± 0.20 3,meanĀ±std
Owner
fast.ai
fast.ai
Collection of in-progress libraries for entity neural networks.

ENN Incubator Collection of in-progress libraries for entity neural networks: Neural Network Architectures for Structured State Entity Gym: Abstractio

25 Dec 01, 2022
Anchor-free Oriented Proposal Generator for Object Detection

Anchor-free Oriented Proposal Generator for Object Detection Gong Cheng, Jiabao Wang, Ke Li, Xingxing Xie, Chunbo Lang, Yanqing Yao, Junwei Han, Intro

jbwang1997 56 Nov 15, 2022
You Only Look One-level Feature (YOLOF), CVPR2021, Detectron2

You Only Look One-level Feature (YOLOF), CVPR2021 A simple, fast, and efficient object detector without FPN. This repo provides a neat implementation

qiang chen 273 Jan 03, 2023
Repository of the paper Compressing Sensor Data for Remote Assistance of Autonomous Vehicles using Deep Generative Models at ML4AD @ NeurIPS 2021.

Compressing Sensor Data for Remote Assistance of Autonomous Vehicles using Deep Generative Models Code and supplementary materials Repository of the p

Daniel Bogdoll 4 Jul 13, 2022
[NIPS 2021] UOTA: Improving Self-supervised Learning with Automated Unsupervised Outlier Arbitration.

UOTA: Improving Self-supervised Learning with Automated Unsupervised Outlier Arbitration This repository is the official PyTorch implementation of UOT

6 Jun 29, 2022
Compact Bidirectional Transformer for Image Captioning

Compact Bidirectional Transformer for Image Captioning Requirements Python 3.8 Pytorch 1.6 lmdb h5py tensorboardX Prepare Data Please use git clone --

YE Zhou 19 Dec 12, 2022
Dense Unsupervised Learning for Video Segmentation (NeurIPS*2021)

Dense Unsupervised Learning for Video Segmentation This repository contains the official implementation of our paper: Dense Unsupervised Learning for

Visual Inference Lab @TU Darmstadt 173 Dec 26, 2022
ReferFormer - Official Implementation of ReferFormer

The official implementation of the paper: Language as Queries for Referring Vide

Jonas Wu 232 Dec 29, 2022
2D Time independent Schrodinger equation solver for arbitrary shape of well

Schrodinger Well Python Python solver for timeless Schrodinger equation for well with arbitrary shape https://imgur.com/a/jlhK7OZ Pictures of circular

WeightAn 24 Nov 18, 2022
GLNet for Memory-Efficient Segmentation of Ultra-High Resolution Images

GLNet for Memory-Efficient Segmentation of Ultra-High Resolution Images Collaborative Global-Local Networks for Memory-Efļ¬cient Segmentation of Ultra-

VITA 298 Dec 12, 2022
Type4Py: Deep Similarity Learning-Based Type Inference for Python

Type4Py: Deep Similarity Learning-Based Type Inference for Python This repository contains the implementation of Type4Py and instructions for re-produ

Software Analytics Lab 45 Dec 15, 2022
PaSST: Efficient Training of Audio Transformers with Patchout

PaSST: Efficient Training of Audio Transformers with Patchout This is the implementation for Efficient Training of Audio Transformers with Patchout Pa

165 Dec 26, 2022
Nerf pl - NeRF (Neural Radiance Fields) and NeRF in the Wild using pytorch-lightning

nerf_pl Update: an improved NSFF implementation to handle dynamic scene is open! Update: NeRF-W (NeRF in the Wild) implementation is added to nerfw br

AI葵 1.8k Dec 30, 2022
Official implementation of "Generating 3D Molecules for Target Protein Binding"

Generating 3D Molecules for Target Protein Binding This is the official implementation of the GraphBP method proposed in the following paper. Meng Liu

DIVE Lab, Texas A&M University 74 Dec 07, 2022
Repository for "Toward Practical Monocular Indoor Depth Estimation" (CVPR 2022)

Toward Practical Monocular Indoor Depth Estimation Cho-Ying Wu, Jialiang Wang, Michael Hall, Ulrich Neumann, Shuochen Su [arXiv] [project site] DistDe

Meta Research 122 Dec 13, 2022
All the code and files related to the MI-Lab of UE19CS305 course in sem 5

Machine-Intelligence-Lab-CS305 The compilation of all the code an drelated files from MI-Lab UE19CS305 (of batch 2019-2023) offered by PES University

Arvind Krishna 3 Nov 10, 2022
Procedural 3D data generation pipeline for architecture

Synthetic Dataset Generator Authors: Stanislava Fedorova Alberto Tono Meher Shashwat Nigam Jiayao Zhang Amirhossein Ahmadnia Cecilia bolognesi Dominik

Computational Design Institute 49 Nov 25, 2022
Detection of PCBA defect

Detection_of_PCBA_defect Detection_of_PCBA_defect Use yolov5 to train. $pip install -r requirements.txt Detect.py will detect file(jpg,mp4...) in cu

6 Nov 28, 2022
The code for SAG-DTA: Prediction of Drugā€“Target Affinity Using Self-Attention Graph Network.

SAG-DTA The code is the implementation for the paper 'SAG-DTA: Prediction of Drugā€“Target Affinity Using Self-Attention Graph Network'. Requirements py

Shugang Zhang 7 Aug 02, 2022
Band-Adaptive Spectral-Spatial Feature Learning Neural Network for Hyperspectral Image Classification

Band-Adaptive Spectral-Spatial Feature Learning Neural Network for Hyperspectral Image Classification

258 Dec 29, 2022