A smaller subset of 10 easily classified classes from Imagenet, and a little more French

Overview

Imagenette

🎶 Imagenette, gentille imagenette,

Imagenette, je te plumerai. 🎶

(Imagenette theme song thanks to Samuel Finlayson)


NB:

  • Versions of Imagenette and Imagewoof with noisy labels are now available as CSV files that come with the dataset.
  • The Imagenette and Imagewoof datasets have recently (Dec 6 2019) changed. They now have a 70/30 train/valid split.
  • The old versions (which have a much smaller validation set) are still available with the same URLs, but the URLs below point to the new versions.
  • We've also added the new Image网 dataset (see below for details). The leaderboards below been updated using the new datasets, using a strong. Can you beat it?...

The Datasets

Imagenette

Imagenette is a subset of 10 easily classified classes from Imagenet (tench, English springer, cassette player, chain saw, church, French horn, garbage truck, gas pump, golf ball, parachute).

'Imagenette' is pronounced just like 'Imagenet', except with a corny inauthentic French accent. If you've seen Peter Sellars in The Pink Panther, then think something like that. It's important to ham up the accent as much as possible, otherwise people might not be sure whether you're refering to "Imagenette" or "Imagenet". (Note to native French speakers: to avoid confusion, be sure to use a corny inauthentic American accent when saying "Imagenet". Think something like the philosophy restaurant skit from Monty Python's The Meaning of Life.)

The '320 px' and '160 px' versions have their shortest side resized to that size, with their aspect ratio maintained.

The dataset also comes with a CSV file with 1%, 5%, 25%, and 50% of the labels randomly changed to an incorrect label. More information about the noisy labels are provided in the "noisy_labels" folder. Leaderboards for 5% noise and 50% noise are maintained below.

Too easy for you? In that case, you might want to try Imagewoof.

Imagewoof

Imagewoof is a subset of 10 classes from Imagenet that aren't so easy to classify, since they're all dog breeds. The breeds are: Australian terrier, Border terrier, Samoyed, Beagle, Shih-Tzu, English foxhound, Rhodesian ridgeback, Dingo, Golden retriever, Old English sheepdog. (No we will not enter in to any discussion in to whether a dingo is in fact a dog. Any suggestions to the contrary are un-Australian. Thank you for your cooperation.)

The dataset also comes with a CSV file with 1%, 5%, 25%, and 50% of the labels randomly changed to an incorrect label. More information about the noisy labels are provided in the "noisy_labels" folder.

Imagewoof too easy for you too?!? Then get your hands on Image网.

Image网

Image网 is pronounced "Imagewang"; 网 means "net" in Chinese! Image网 contains Imagenette and Imagewoof combined, but with some twists that make it into a tricky semi-supervised unbalanced classification problem:

  • The validation set is the same as Imagewoof (i.e. 30% of Imagewoof images); there are no Imagenette images in the validation set (they're all in the training set)

  • Only 10% of Imagewoof images are in the training set!

  • The remaining are in the unsup ("unsupervised") directory, and you can not use their labels in training!

  • It's even hard to type and hard to say!

  • Full size download;

  • 320 px download;

  • 160 px download.

Why Imagenette?

I (Jeremy Howard, that is) mainly made Imagenette because I wanted a small vision dataset I could use to quickly see if my algorithm ideas might have a chance of working. They normally don't, but testing them on Imagenet takes a really long time for me to find that out, especially because I'm interested in algorithms that perform particularly well at the end of training.

But I think this can be a useful dataset for others as well.

Usage

If you are already using the fastai library, you can download and access these quickly with commands like:

path = untar_data(URLs.IMAGENETTE_160)

where path now stores the destination to ImageNette-160.

For researchers

  • Try to create a classifier that's as accurate as possible under various constraints (we'll keep leaderboards below, submit your PR with a link to your repo or gist!), such as:
    • Within a certain number of epochs: 5, 20, 40, 160
    • Within a certain budget on AWS or GCP (use spot or interruptible instances to save money): $0.05, $0.10, $0.25, $0.50, $1.00, $2.00
  • Experiment with other low resource problems like transfer learning from small datasets, using semi-supervised learning to help classify small datasets, etc
  • Test the impact of using different sized images, either separately, or together as part of training (i.e. progressive resizing)
  • Compare your algorithm on easy vs hard small datasets, which are otherwise very similar (Imagenette vs Imagewoof)
  • Ensure that you start from random weights - not from pretrained weights.

For students

  • Practice your modeling skills on a dataset that's very similar to Imagenet, but much less expensive to deal with
  • Do send me a PR with your other applications for this dataset!

Tips

  • Because there are only 10 categories, the usual "top 5 accuracy" isn't so interesting. So you should generally report top 1 accuracy when using Imagenette
  • The best approaches to 5 epoch training often don't scale well to more epochs
  • Data augmentation like mixup tends to only help for 80+ epochs

Leaderboard

Generally you'll see +/- 1% differences from run to run since it's quite a small validation set. So please only send in contributions that are higher than the reported accuracy >80% of the time. Here's the rules:

  • No inference time tricks, e.g. no: TTA, validation size > train size
  • Must start with random weights
  • Must be one of the size/#epoch combinations listed in the table
  • If you have the resources to do so, try to get an average of 5 runs, to get a stable comparison. Use the "# Runs" column to include this (note that train_imagenette.py provides a --runs flag to make this easy)
  • In the URL column include a link to a notebook, blog post, gist, or similar which explains what you did to get your result, and includes the code you used (or a link to it), including the exact commit, so that others can reproduce your result.

Imagenette Leaderboard

Size (px) Epochs URL Accuracy # Runs
128 5 fastai2 train_imagenette.py 2020-10 + MaxBlurPool + tuned hyperparams 87.43% 5, mean
128 20 fastai2 train_imagenette.py 2020-01 + MaxBlurPool 91.57% 5, mean
128 80 fastai2 train_imagenette.py 2020-01 93.55% 1
128 200 fastai2 train_imagenette.py 2020-01 94.24% 1
192 5 fastai2 train_imagenette.py 2020-01 + MaxBlurPool 86.76% 5, mean
192 20 fastai2 train_imagenette.py 2020-01 + MaxBlurPool 92.50% 5, mean
192 80 fastai2 train_imagenette.py 2020-01 94.50% 1
192 200 fastai2 train_imagenette.py 2020-01 95.03% 1
256 5 fastai2 train_imagenette.py 2020-01 + MaxBlurPool 86.85% 5, mean
256 20 fastai2 train_imagenette.py 2020-01 + MaxBlurPool 93.53% 5, mean
256 80 fastai2 train_imagenette.py 2020-01 94.90% 1
256 200 fastai2 train_imagenette.py 2020-01 95.11% 1

Imagenette w/Label Noise = 5%

Size (px) Epochs URL Accuracy # Runs
128 5 baseline 83.44% 1
128 20 baseline 89.53% 1
128 80 baseline 89.30% 1
128 200 baseline 90.04% 1
192 5 baseline 84.13% 1
192 20 baseline 90.65% 1
192 80 baseline 91.01% 1
192 200 baseline 91.08% 1
256 5 SESEMI 88.87% ± 0.67 5,mean±std
256 20 baseline 91.39% 1
256 80 SESEMI 92.95% ± 0.12 3,mean±std
256 200 SESEMI 93.96% ± 0.23 3,mean±std

Imagenette w/Label Noise = 50%

Size (px) Epochs URL Accuracy # Runs
128 5 baseline 66.60% 1
128 20 baseline 79.36% 1
128 80 baseline 50.80% 1
128 200 baseline 52.18% 1
192 5 baseline 67.54% 1
192 20 baseline 79.34% 1
192 80 baseline 52.51% 1
192 200 baseline 53.71% 1
256 5 SESEMI 76.72% ± 0.83 5,mean±std
256 20 baseline 79.21% 1
256 80 SESEMI 57.76% ± 0.39 3,mean±std
256 200 SESEMI 61.48% ± 0.33 3,mean±std

Imagewoof Leaderboard

Size (px) Epochs URL Accuracy # Runs
128 5 depthwise(x6) 76.61% 5, mean
128 20 depthwise(x4) 86.27% 5, mean
128 80 depthwise(x4) 87.83% 1
128 200 fastai2 train_imagenette.py 2020-01 87.20% 1
192 5 depthwise(x4) 81.15% 5, mean
192 20 depthwise(x4) 88.37% 5, mean
192 80 depthwise(x2) 90.30% 1
192 200 fastai2 train_imagenette.py 2020-01 89.54% 1
256 5 Resnet Trick + Mish + Sa + MaxBlurPool 78,84% 5, mean
256 20 Resnet Trick + Mish + Sa + MaxBlurPool 88,58% 5, mean
256 80 fastai2 train_imagenette.py 2020-01 90.48% 1
256 200 fastai2 train_imagenette.py 2020-01 90.38% 1

Image网 Leaderboard

Size (px) Epochs URL Accuracy # Runs
128 5 SwAV 72.94% 5,mean
128 20 SwAV 72.18% 3,mean
128 80 SwAV 69.53% 1
128 200 SwAV 66.04% 1
192 5 SwAV 77.07% 5,mean
192 20 SwAV 77.81% 3,mean
192 80 SwAV 74.9% 1
192 200 SwAV 71.77% 1
256 5 SwAV 79.56% 5,mean
256 20 SwAV 79.2% 3,mean
256 80 SESEMI 78.41% ± 0.39 5,mean±std
256 200 SESEMI 79.27% ± 0.20 3,mean±std
Owner
fast.ai
fast.ai
Code for the AAAI-2022 paper: Imagine by Reasoning: A Reasoning-Based Implicit Semantic Data Augmentation for Long-Tailed Classification

Imagine by Reasoning: A Reasoning-Based Implicit Semantic Data Augmentation for Long-Tailed Classification (AAAI 2022) Prerequisite PyTorch = 1.2.0 P

16 Dec 14, 2022
git git《Transformer Meets Tracker: Exploiting Temporal Context for Robust Visual Tracking》(CVPR 2021) GitHub:git2] 《Masksembles for Uncertainty Estimation》(CVPR 2021) GitHub:git3]

Transformer Meets Tracker: Exploiting Temporal Context for Robust Visual Tracking Ning Wang, Wengang Zhou, Jie Wang, and Houqiang Li Accepted by CVPR

NingWang 236 Dec 22, 2022
Rlmm blender toolkit - A set of tools to streamline level generation in UDK straight from Blender

rlmm_blender_toolkit A set of tools to streamline level generation in UDK straig

Rocket League Mapmaking 0 Jan 15, 2022
A unified 3D Transformer Pipeline for visual synthesis

Overview This is the official repo for the paper: "NÜWA: Visual Synthesis Pre-training for Neural visUal World creAtion". NÜWA is a unified multimodal

Microsoft 2.6k Jan 03, 2023
PN-Net a neural field-based framework for depth estimation from single-view RGB images.

PN-Net We present a neural field-based framework for depth estimation from single-view RGB images. Rather than representing a 2D depth map as a single

1 Oct 02, 2021
The PyTorch implementation of DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision.

DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision The PyTorch implementation of DiscoBox: Weakly Supe

Shiyi Lan 1 Oct 23, 2021
Article Reranking by Memory-enhanced Key Sentence Matching for Detecting Previously Fact-checked Claims.

MTM This is the official repository of the paper: Article Reranking by Memory-enhanced Key Sentence Matching for Detecting Previously Fact-checked Cla

ICTMCG 13 Sep 17, 2022
Deal or No Deal? End-to-End Learning for Negotiation Dialogues

Introduction This is a PyTorch implementation of the following research papers: (1) Hierarchical Text Generation and Planning for Strategic Dialogue (

Facebook Research 1.4k Dec 29, 2022
CMP 414/765 course repository for Spring 2022 semester

CMP414/765: Artificial Intelligence Spring2021 This is the GitHub repository for course CMP 414/765: Artificial Intelligence taught at The City Univer

ch00226855 4 May 16, 2022
RM Operation can equivalently convert ResNet to VGG, which is better for pruning; and can help RepVGG perform better when the depth is large.

RMNet: Equivalently Removing Residual Connection from Networks This repository is the official implementation of "RMNet: Equivalently Removing Residua

184 Jan 04, 2023
Using this codebase as a tool for my own research. Making some modifications to the original repo for my own purposes.

For SwapNet Create a list.txt file containing all the images to process. This can be done with the GNU find command: find path/to/input/folder -name '

Andrew Jong 2 Nov 10, 2021
Python package for covariance matrices manipulation and Biosignal classification with application in Brain Computer interface

pyRiemann pyRiemann is a python package for covariance matrices manipulation and classification through Riemannian geometry. The primary target is cla

447 Jan 05, 2023
Developing your First ML Workflow of the AWS Machine Learning Engineer Nanodegree Program

Exercises and project documentation for the 3. Developing your First ML Workflow of the AWS Machine Learning Engineer Nanodegree Program

Simona Mircheva 1 Jan 13, 2022
PyTorch code for EMNLP 2021 paper: Don't be Contradicted with Anything! CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System

Don’t be Contradicted with Anything!CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System This repository contains the PyTorch im

Libo Qin 25 Sep 06, 2022
Object Tracking and Detection Using OpenCV

Object tracking is one such application of computer vision where an object is detected in a video, otherwise interpreted as a set of frames, and the object’s trajectory is estimated. For instance, yo

Happy N. Monday 4 Aug 21, 2022
The mini-AlphaStar (mini-AS, or mAS) - mini-scale version (non-official) of the AlphaStar (AS)

A mini-scale reproduction code of the AlphaStar program. Note: the original AlphaStar is the AI proposed by DeepMind to play StarCraft II.

Ruo-Ze Liu 216 Jan 04, 2023
[EMNLP 2021] MuVER: Improving First-Stage Entity Retrieval with Multi-View Entity Representations

MuVER This repo contains the code and pre-trained model for our EMNLP 2021 paper: MuVER: Improving First-Stage Entity Retrieval with Multi-View Entity

24 May 30, 2022
Charsiu: A transformer-based phonetic aligner

Charsiu: A transformer-based phonetic aligner [arXiv] Note. This is a preview version. The aligner is under active development. New functions, new lan

jzhu 166 Dec 09, 2022
OpenCVのGrabCut()を利用したセマンティックセグメンテーション向けアノテーションツール(Annotation tool using GrabCut() of OpenCV. It can be used to create datasets for semantic segmentation.)

[Japanese/English] GrabCut-Annotation-Tool GrabCut-Annotation-Tool.mp4 OpenCVのGrabCut()を利用したアノテーションツールです。 セマンティックセグメンテーション向けのデータセット作成にご使用いただけます。 ※Grab

KazuhitoTakahashi 30 Nov 18, 2022