IOT: Instance-wise Layer Reordering for Transformer Structures

Related tags

Deep LearningIOT
Overview

Introduction

This repository contains the code for Instance-wise Ordered Transformer (IOT), which is introduced in the ICLR2021 paper IOT: Instance-wise Layer Reordering for Transformer Structures.

If you find this work helpful in your research, please cite as:

@inproceedings{
zhu2021iot,
title={{\{}IOT{\}}: Instance-wise Layer Reordering for Transformer Structures},
author={Jinhua Zhu and Lijun Wu and Yingce Xia and Shufang Xie and Tao Qin and Wengang Zhou and Houqiang Li and Tie-Yan Liu},
booktitle={International Conference on Learning Representations},
year={2021},
url={https://openreview.net/forum?id=ipUPfYxWZvM}
}

Requirements and Installation

  • PyTorch version == 1.0.0
  • Python version >= 3.5

To install IOT:

git clone https://github.com/instance-wise-ordered-transformer/IOT
cd IOT
pip install --editable .

Getting Started

Take IWSLT14 De-En translation as an example.

Data Preprocessing

cd examples/translation/
bash prepare-iwslt14.sh
cd ../..

TEXT=examples/translation/iwslt14.tokenized.de-en
python preprocess.py --source-lang de --target-lang en \
    --trainpref $TEXT/train --validpref $TEXT/valid --testpref $TEXT/test \
    --destdir data-bin/iwslt14.tokenized.de-en --joined-dictionary

Training

Encoder order is set to be the default one without reordering (ENCODER_MAX_ORDER=1), since the paper finds that both reordering encoder and decoder is not good as reordering decoder only.

#!/bin/bash
export CUDA_VISIBLE_DEVICES=${1:-0}
nvidia-smi

ENCODER_MAX_ORDER=1
DECODER_MAX_ORDER=3
DECODER_ORDER="0 3 5"
DIVERSITY=0.1
GS_MAX=20
GS_MIN=2
GS_R=0
GS_UF=5000
KL=0.01
CLAMPVAL=0.05

DECODER_ORDER_NAME=`echo $DECODER_ORDER | sed 's/ //g'`
SAVE_DIR=checkpoints/dec_${DECODER_MAX_ORDER}_order_${DECODER_ORDER_NAME}_div_${DIVERSITY}_gsmax_${GS_MAX}_gsmin_${GS_MIN}_gsr_${GS_R}_gsuf_${GS_UF}_kl_${KL}_clampval_${CLAMPVAL}
mkdir -p ${SAVE_DIR}

python -u train.py data-bin/iwslt14.tokenized.de-en -a transformer_iwslt_de_en \
--optimizer adam --lr 0.0005 -s de -t en --label-smoothing 0.1 --dropout 0.3 --max-tokens 4000 \
--min-lr 1e-09 --lr-scheduler inverse_sqrt --weight-decay 0.0001 --criterion label_smoothed_cross_entropy \
--max-update 100000 --warmup-updates 4000 --warmup-init-lr 1e-07 --adam-betas '(0.9,0.98)' \
--save-dir $SAVE_DIR --share-all-embeddings  --gs-clamp --decoder-orders $DECODER_ORDER  \
--encoder-max-order $ENCODER_MAX_ORDER  --decoder-max-order $DECODER_MAX_ORDER  --diversity $DIVERSITY \
--gumbel-softmax-max $GS_MAX  --gumbel-softmax-min $GS_MIN --gumbel-softmax-tau-r $GS_R  --gumbel-softmax-update-freq $GS_UF \
--kl $KL --clamp-value $CLAMPVAL | tee -a ${SAVE_DIR}/train.log

Evaluation

#!/bin/bash
set -x
set -e

pip install -e . --user
export CUDA_VISIBLE_DEVICES=${1:-0}
nvidia-smi

ENCODER_MAX_ORDER=1
DECODER_MAX_ORDER=3
DECODER_ORDER="0 3 5"
DIVERSITY=0.1
GS_MAX=20
GS_MIN=2
GS_R=0
GS_UF=5000
KL=0.01
CLAMPVAL=0.05

DECODER_ORDER_NAME=`echo $DECODER_ORDER | sed 's/ //g'`
SAVE_DIR=checkpoints/dec_${DECODER_MAX_ORDER}_order_${DECODER_ORDER_NAME}_div_${DIVERSITY}_gsmax_${GS_MAX}_gsmin_${GS_MIN}_gsr_${GS_R}_gsuf_${GS_UF}_kl_${KL}_clampval_${CLAMPVAL}

python generate.py data-bin/iwslt14.tokenized.de-en \
  --path $SAVE_DIR/checkpint_best.pt \
  --batch-size 128 --beam 5 --remove-bpe --quiet --num-ckts $DECODER_MAX_ORDER 
Code and datasets for the paper "Combining Events and Frames using Recurrent Asynchronous Multimodal Networks for Monocular Depth Prediction" (RA-L, 2021)

Combining Events and Frames using Recurrent Asynchronous Multimodal Networks for Monocular Depth Prediction This is the code for the paper Combining E

Robotics and Perception Group 69 Dec 26, 2022
Deep Learning for Time Series Forecasting.

nixtlats:Deep Learning for Time Series Forecasting [nikstla] (noun, nahuatl) Period of time. State-of-the-art time series forecasting for pytorch. Nix

Nixtla 5 Dec 06, 2022
Official Pytorch implementation of the paper "Action-Conditioned 3D Human Motion Synthesis with Transformer VAE", ICCV 2021

ACTOR Official Pytorch implementation of the paper "Action-Conditioned 3D Human Motion Synthesis with Transformer VAE", ICCV 2021. Please visit our we

Mathis Petrovich 248 Dec 23, 2022
Yolov3 pytorch implementation

YOLOV3 Pytorch实现 在bubbliiing大佬代码的基础上进行了修改,添加了部分注释。 预训练模型 预训练模型来源于bubbliiing。 链接:https://pan.baidu.com/s/1ncREw6Na9ycZptdxiVMApw 提取码:appk 训练自己的数据集 按照VO

4 Aug 27, 2022
Optimized Gillespie algorithm for simulating Stochastic sPAtial models of Cancer Evolution (OG-SPACE)

OG-SPACE Introduction Optimized Gillespie algorithm for simulating Stochastic sPAtial models of Cancer Evolution (OG-SPACE) is a computational framewo

Data and Computational Biology Group UNIMIB (was BI*oinformatics MI*lan B*icocca) 0 Nov 17, 2021
Leaderboard, taxonomy, and curated list of few-shot object detection papers.

Leaderboard, taxonomy, and curated list of few-shot object detection papers.

Gabriel Huang 70 Jan 07, 2023
PyTorch Implementation of ECCV 2020 Spotlight TuiGAN: Learning Versatile Image-to-Image Translation with Two Unpaired Images

TuiGAN-PyTorch Official PyTorch Implementation of "TuiGAN: Learning Versatile Image-to-Image Translation with Two Unpaired Images" (ECCV 2020 Spotligh

181 Dec 09, 2022
Optimizes image files by converting them to webp while also updating all references.

About Optimizes images by (re-)saving them as webp. For every file it replaced it automatically updates all references. Works on single files as well

Watermelon Wolverine 18 Dec 23, 2022
Official implementation of GraphMask as presented in our paper Interpreting Graph Neural Networks for NLP With Differentiable Edge Masking.

GraphMask This repository contains an implementation of GraphMask, the interpretability technique for graph neural networks presented in our ICLR 2021

Michael Schlichtkrull 29 Sep 02, 2022
Adaptive Graph Convolution for Point Cloud Analysis

Adaptive Graph Convolution for Point Cloud Analysis This repository contains the implementation of AdaptConv for point cloud analysis. Adaptive Graph

64 Dec 21, 2022
A ssl analyzer which could analyzer target domain's certificate.

ssl_analyzer A ssl analyzer which could analyzer target domain's certificate. Analyze the domain name ssl certificate information according to the inp

vincent 17 Dec 12, 2022
Using Random Effects to Account for High-Cardinality Categorical Features and Repeated Measures in Deep Neural Networks

LMMNN Using Random Effects to Account for High-Cardinality Categorical Features and Repeated Measures in Deep Neural Networks This is the working dire

Giora Simchoni 10 Nov 02, 2022
[ICLR2021] Unlearnable Examples: Making Personal Data Unexploitable

Unlearnable Examples Code for ICLR2021 Spotlight Paper "Unlearnable Examples: Making Personal Data Unexploitable " by Hanxun Huang, Xingjun Ma, Sarah

Hanxun Huang 98 Dec 07, 2022
PixelPyramids: Exact Inference Models from Lossless Image Pyramids (ICCV 2021)

PixelPyramids: Exact Inference Models from Lossless Image Pyramids This repository contains the PyTorch implementation of the paper PixelPyramids: Exa

Visual Inference Lab @TU Darmstadt 8 Dec 11, 2022
FaceQgen: Semi-Supervised Deep Learning for Face Image Quality Assessment

FaceQgen FaceQgen: Semi-Supervised Deep Learning for Face Image Quality Assessment This repository is based on the paper: "FaceQgen: Semi-Supervised D

Javier Hernandez-Ortega 3 Aug 04, 2022
Using deep actor-critic model to learn best strategies in pair trading

Deep-Reinforcement-Learning-in-Stock-Trading Using deep actor-critic model to learn best strategies in pair trading Abstract Partially observed Markov

281 Dec 09, 2022
Official PyTorch Implementation of "Self-supervised Auxiliary Learning with Meta-paths for Heterogeneous Graphs". NeurIPS 2020.

Self-supervised Auxiliary Learning with Meta-paths for Heterogeneous Graphs This repository is the implementation of SELAR. Dasol Hwang* , Jinyoung Pa

MLV Lab (Machine Learning and Vision Lab at Korea University) 48 Nov 09, 2022
Mitsuba 2: A Retargetable Forward and Inverse Renderer

Mitsuba Renderer 2 Documentation Mitsuba 2 is a research-oriented rendering system written in portable C++17. It consists of a small set of core libra

Mitsuba Physically Based Renderer 2k Jan 07, 2023
Source code of CIKM2021 Long Paper "PSSL: Self-supervised Learning for Personalized Search with Contrastive Sampling".

PSSL Source code of CIKM2021 Long Paper "PSSL: Self-supervised Learning for Personalized Search with Contrastive Sampling". It consists of the pre-tra

2 Dec 21, 2021
[ICRA 2022] An opensource framework for cooperative detection. Official implementation for OPV2V.

OpenCOOD OpenCOOD is an Open COOperative Detection framework for autonomous driving. It is also the official implementation of the ICRA 2022 paper OPV

Runsheng Xu 322 Dec 23, 2022