IOT: Instance-wise Layer Reordering for Transformer Structures

Related tags

Deep LearningIOT
Overview

Introduction

This repository contains the code for Instance-wise Ordered Transformer (IOT), which is introduced in the ICLR2021 paper IOT: Instance-wise Layer Reordering for Transformer Structures.

If you find this work helpful in your research, please cite as:

@inproceedings{
zhu2021iot,
title={{\{}IOT{\}}: Instance-wise Layer Reordering for Transformer Structures},
author={Jinhua Zhu and Lijun Wu and Yingce Xia and Shufang Xie and Tao Qin and Wengang Zhou and Houqiang Li and Tie-Yan Liu},
booktitle={International Conference on Learning Representations},
year={2021},
url={https://openreview.net/forum?id=ipUPfYxWZvM}
}

Requirements and Installation

  • PyTorch version == 1.0.0
  • Python version >= 3.5

To install IOT:

git clone https://github.com/instance-wise-ordered-transformer/IOT
cd IOT
pip install --editable .

Getting Started

Take IWSLT14 De-En translation as an example.

Data Preprocessing

cd examples/translation/
bash prepare-iwslt14.sh
cd ../..

TEXT=examples/translation/iwslt14.tokenized.de-en
python preprocess.py --source-lang de --target-lang en \
    --trainpref $TEXT/train --validpref $TEXT/valid --testpref $TEXT/test \
    --destdir data-bin/iwslt14.tokenized.de-en --joined-dictionary

Training

Encoder order is set to be the default one without reordering (ENCODER_MAX_ORDER=1), since the paper finds that both reordering encoder and decoder is not good as reordering decoder only.

#!/bin/bash
export CUDA_VISIBLE_DEVICES=${1:-0}
nvidia-smi

ENCODER_MAX_ORDER=1
DECODER_MAX_ORDER=3
DECODER_ORDER="0 3 5"
DIVERSITY=0.1
GS_MAX=20
GS_MIN=2
GS_R=0
GS_UF=5000
KL=0.01
CLAMPVAL=0.05

DECODER_ORDER_NAME=`echo $DECODER_ORDER | sed 's/ //g'`
SAVE_DIR=checkpoints/dec_${DECODER_MAX_ORDER}_order_${DECODER_ORDER_NAME}_div_${DIVERSITY}_gsmax_${GS_MAX}_gsmin_${GS_MIN}_gsr_${GS_R}_gsuf_${GS_UF}_kl_${KL}_clampval_${CLAMPVAL}
mkdir -p ${SAVE_DIR}

python -u train.py data-bin/iwslt14.tokenized.de-en -a transformer_iwslt_de_en \
--optimizer adam --lr 0.0005 -s de -t en --label-smoothing 0.1 --dropout 0.3 --max-tokens 4000 \
--min-lr 1e-09 --lr-scheduler inverse_sqrt --weight-decay 0.0001 --criterion label_smoothed_cross_entropy \
--max-update 100000 --warmup-updates 4000 --warmup-init-lr 1e-07 --adam-betas '(0.9,0.98)' \
--save-dir $SAVE_DIR --share-all-embeddings  --gs-clamp --decoder-orders $DECODER_ORDER  \
--encoder-max-order $ENCODER_MAX_ORDER  --decoder-max-order $DECODER_MAX_ORDER  --diversity $DIVERSITY \
--gumbel-softmax-max $GS_MAX  --gumbel-softmax-min $GS_MIN --gumbel-softmax-tau-r $GS_R  --gumbel-softmax-update-freq $GS_UF \
--kl $KL --clamp-value $CLAMPVAL | tee -a ${SAVE_DIR}/train.log

Evaluation

#!/bin/bash
set -x
set -e

pip install -e . --user
export CUDA_VISIBLE_DEVICES=${1:-0}
nvidia-smi

ENCODER_MAX_ORDER=1
DECODER_MAX_ORDER=3
DECODER_ORDER="0 3 5"
DIVERSITY=0.1
GS_MAX=20
GS_MIN=2
GS_R=0
GS_UF=5000
KL=0.01
CLAMPVAL=0.05

DECODER_ORDER_NAME=`echo $DECODER_ORDER | sed 's/ //g'`
SAVE_DIR=checkpoints/dec_${DECODER_MAX_ORDER}_order_${DECODER_ORDER_NAME}_div_${DIVERSITY}_gsmax_${GS_MAX}_gsmin_${GS_MIN}_gsr_${GS_R}_gsuf_${GS_UF}_kl_${KL}_clampval_${CLAMPVAL}

python generate.py data-bin/iwslt14.tokenized.de-en \
  --path $SAVE_DIR/checkpint_best.pt \
  --batch-size 128 --beam 5 --remove-bpe --quiet --num-ckts $DECODER_MAX_ORDER 
Gradient-free global optimization algorithm for multidimensional functions based on the low rank tensor train format

ttopt Description Gradient-free global optimization algorithm for multidimensional functions based on the low rank tensor train (TT) format and maximu

5 May 23, 2022
Code repo for EMNLP21 paper "Zero-Shot Information Extraction as a Unified Text-to-Triple Translation"

Zero-Shot Information Extraction as a Unified Text-to-Triple Translation Source code repo for paper Zero-Shot Information Extraction as a Unified Text

cgraywang 88 Dec 31, 2022
DGN pymarl - Implementation of DGN on Pymarl, which could be trained by VDN or QMIX

This is the implementation of DGN on Pymarl, which could be trained by VDN or QM

4 Nov 23, 2022
Code and data for paper "Deep Photo Style Transfer"

deep-photo-styletransfer Code and data for paper "Deep Photo Style Transfer" Disclaimer This software is published for academic and non-commercial use

Fujun Luan 9.9k Dec 29, 2022
Keras-tensorflow implementation of Fully Convolutional Networks for Semantic Segmentation(Unfinished)

Keras-FCN Fully convolutional networks and semantic segmentation with Keras. Models Models are found in models.py, and include ResNet and DenseNet bas

645 Dec 29, 2022
A general-purpose programming language, focused on simplicity, safety and stability.

The Rivet programming language A general-purpose programming language, focused on simplicity, safety and stability. Rivet's goal is to be a very power

The Rivet programming language 17 Dec 29, 2022
2D Time independent Schrodinger equation solver for arbitrary shape of well

Schrodinger Well Python Python solver for timeless Schrodinger equation for well with arbitrary shape https://imgur.com/a/jlhK7OZ Pictures of circular

WeightAn 24 Nov 18, 2022
HashNeRF-pytorch - Pure PyTorch Implementation of NVIDIA paper on Instant Training of Neural Graphics primitives

HashNeRF-pytorch Instant-NGP recently introduced a Multi-resolution Hash Encodin

Yash Sanjay Bhalgat 616 Jan 06, 2023
[CVPR2021] Invertible Image Signal Processing

Invertible Image Signal Processing This repository includes official codes for "Invertible Image Signal Processing (CVPR2021)". Figure: Our framework

Yazhou XING 281 Dec 31, 2022
Evaluation and Benchmarking of Speech Super-resolution Methods

Speech Super-resolution Evaluation and Benchmarking What this repo do: A toolbox for the evaluation of speech super-resolution algorithms. Unify the e

Haohe Liu (刘濠赫) 84 Dec 20, 2022
Pytorch code for "Text-Independent Speaker Verification Using 3D Convolutional Neural Networks".

:speaker: Deep Learning & 3D Convolutional Neural Networks for Speaker Verification

Amirsina Torfi 114 Dec 18, 2022
Task-related Saliency Network For Few-shot learning

Task-related Saliency Network For Few-shot learning This is an official implementation in Tensorflow of TRSN. Abstract An essential cue of human wisdo

1 Nov 18, 2021
Code release for Universal Domain Adaptation(CVPR 2019)

Universal Domain Adaptation Code release for Universal Domain Adaptation(CVPR 2019) Requirements python 3.6+ PyTorch 1.0 pip install -r requirements.t

THUML @ Tsinghua University 229 Dec 23, 2022
CLOOB training (JAX) and inference (JAX and PyTorch)

cloob-training Pretrained models There are two pretrained CLOOB models in this repo at the moment, a 16 epoch and a 32 epoch ViT-B/16 checkpoint train

Katherine Crowson 64 Nov 27, 2022
[CVPR 2022] CoTTA Code for our CVPR 2022 paper Continual Test-Time Domain Adaptation

CoTTA Code for our CVPR 2022 paper Continual Test-Time Domain Adaptation Prerequisite Please create and activate the following conda envrionment. To r

Qin Wang 87 Jan 08, 2023
🐦 Opytimizer is a Python library consisting of meta-heuristic optimization techniques.

Opytimizer: A Nature-Inspired Python Optimizer Welcome to Opytimizer. Did you ever reach a bottleneck in your computational experiments? Are you tired

Gustavo Rosa 546 Dec 31, 2022
The trained model and denoising example for paper : Cardiopulmonary Auscultation Enhancement with a Two-Stage Noise Cancellation Approach

The trained model and denoising example for paper : Cardiopulmonary Auscultation Enhancement with a Two-Stage Noise Cancellation Approach

ycj_project 1 Jan 18, 2022
Unofficial pytorch-lightning implement of Mip-NeRF

mipnerf_pl Unofficial pytorch-lightning implement of Mip-NeRF, Here are some results generated by this repository (pre-trained models are provided bel

Jianxin Huang 159 Dec 23, 2022
Self-Supervised Document-to-Document Similarity Ranking via Contextualized Language Models and Hierarchical Inference

Self-Supervised Document Similarity Ranking (SDR) via Contextualized Language Models and Hierarchical Inference This repo is the implementation for SD

Microsoft 36 Nov 28, 2022
PyTorch implementation of Hierarchical Multi-label Text Classification: An Attention-based Recurrent Network

hierarchical-multi-label-text-classification-pytorch Hierarchical Multi-label Text Classification: An Attention-based Recurrent Network Approach This

Mingu Kang 17 Dec 13, 2022