Deep ViT Features as Dense Visual Descriptors

Overview

dino-vit-features

[paper] [project page]

Official implementation of the paper "Deep ViT Features as Dense Visual Descriptors".

teaser

We demonstrate the effectiveness of deep features extracted from a self-supervised, pre-trained ViT model (DINO-ViT) as dense patch descriptors via real-world vision tasks: (a-b) co-segmentation & part co-segmentation: given a set of input images (e.g., 4 input images), we automatically co-segment semantically common foreground objects (e.g., animals), and then further partition them into common parts; (c-d) point correspondence: given a pair of input images, we automatically extract a sparse set of corresponding points. We tackle these tasks by applying only lightweight, simple methodologies such as clustering or binning, to deep ViT features.

Setup

Our code is developed in pytorch on and requires the following modules: tqdm, faiss, timm, matplotlib, pydensecrf, opencv, scikit-learn. We use python=3.9 but our code should be runnable on any version above 3.6. We recomment running our code with any CUDA supported GPU for faster performance. We recommend setting the running environment via Anaconda by running the following commands:

$ conda env create -f env/dino-vit-feats-env.yml
$ conda activate dino-vit-feats-env

Otherwise, run the following commands in your conda environment:

$ conda install pytorch torchvision torchaudio cudatoolkit=11 -c pytorch
$ conda install tqdm
$ conda install -c conda-forge faiss
$ conda install -c conda-forge timm 
$ conda install matplotlib
$ pip install opencv-python
$ pip install git+https://github.com/lucasb-eyer/pydensecrf.git
$ conda install -c anaconda scikit-learn

ViT Extractor

We provide a wrapper class for a ViT model to extract dense visual descriptors in extractor.py. You can extract descriptors to .pt files using the following command:

python extractor.py --image_path 
   
     --output_path 
    

    
   

You can specify the pretrained model using the --model flag with the following options:

  • dino_vits8, dino_vits16, dino_vitb8, dino_vitb16 from the DINO repo.
  • vit_small_patch8_224, vit_small_patch16_224, vit_base_patch8_224, vit_base_patch16_224 from the timm repo.

You can specify the stride of patch extracting layer to increase resolution using the --stride flag.

Part Co-segmentation Open In Colab

We provide a notebook for running on a single example in part_cosegmentation.ipynb.

To run on several image sets, arrange each set in a directory, inside a data root directory:


   
    
|
|_ 
    
     
|  |
|  |_ img1.png
|  |_ img2.png
|   
|_ 
     
      
   |
   |_ img1.png
   |_ img2.png
   |_ img3.png
...

     
    
   

The following command will produce results in the specified :

python part_cosegmentation.py --root_dir 
   
     --save_dir 
    

    
   

Note: The default configuration in part_cosegmentation.ipynb is suited for running on small sets (e.g. < 10). Increase amount of num_crop_augmentations for more stable results (and increased runtime). The default configuration in part_cosegmentation.py is suited for larger sets (e.g. >> 10).

Co-segmentation Open In Colab

We provide a notebook for running on a single example in cosegmentation.ipynb.

To run on several image sets, arrange each set in a directory, inside a data root directory:


   
    
|
|_ 
    
     
|  |
|  |_ img1.png
|  |_ img2.png
|   
|_ 
     
      
   |
   |_ img1.png
   |_ img2.png
   |_ img3.png
...

     
    
   

The following command will produce results in the specified :

python cosegmentation.py --root_dir 
   
     --save_dir 
    

    
   

Point Correspondences Open In Colab

We provide a notebook for running on a single example in correpondences.ipynb.

To run on several image pairs, arrange each image pair in a directory, inside a data root directory:


   
    
|
|_ 
    
     
|  |
|  |_ img1.png
|  |_ img2.png
|   
|_ 
     
      
   |
   |_ img1.png
   |_ img2.png
...

     
    
   

The following command will produce results in the specified :

python correspondences.py --root_dir 
   
     --save_dir 
    

    
   

Citation

If you found this repository useful please consider starring and citing :

@article{amir2021deep,
    author    = {Shir Amir and Yossi Gandelsman and Shai Bagon and Tali Dekel},
    title     = {Deep ViT Features as Dense Visual Descriptors},
    journal   = {arXiv preprint arXiv:2112.05814},
    year      = {2021}
}
Owner
Shir Amir
Graduate Student @ Weizmann Institute of Science
Shir Amir
DirectVoxGO reconstructs a scene representation from a set of calibrated images capturing the scene.

DirectVoxGO reconstructs a scene representation from a set of calibrated images capturing the scene. We achieve NeRF-comparable novel-view synthesis quality with super-fast convergence.

sunset 709 Dec 31, 2022
A Jupyter notebook to play with NVIDIA's StyleGAN3 and OpenAI's CLIP for a text-based guided image generation.

A Jupyter notebook to play with NVIDIA's StyleGAN3 and OpenAI's CLIP for a text-based guided image generation.

Eugenio Herrera 175 Dec 29, 2022
Lightweight Salient Object Detection in Optical Remote Sensing Images via Feature Correlation

CorrNet This project provides the code and results for 'Lightweight Salient Object Detection in Optical Remote Sensing Images via Feature Correlation'

Gongyang Li 13 Nov 03, 2022
This is the code for CVPR 2021 oral paper: Jigsaw Clustering for Unsupervised Visual Representation Learning

JigsawClustering Jigsaw Clustering for Unsupervised Visual Representation Learning Pengguang Chen, Shu Liu, Jiaya Jia Introduction This project provid

DV Lab 73 Sep 18, 2022
MNIST, but with Bezier curves instead of pixels

bezier-mnist This is a work-in-progress vector version of the MNIST dataset. Samples Here are some samples from the training set. Note that, while the

Alex Nichol 15 Jan 16, 2022
Use MATLAB to simulate the signal and extract features. Use PyTorch to build and train deep network to do spectrum sensing.

Deep-Learning-based-Spectrum-Sensing Use MATLAB to simulate the signal and extract features. Use PyTorch to build and train deep network to do spectru

10 Dec 14, 2022
Gans-in-action - Companion repository to GANs in Action: Deep learning with Generative Adversarial Networks

GANs in Action by Jakub Langr and Vladimir Bok List of available code: Chapter 2: Colab, Notebook Chapter 3: Notebook Chapter 4: Notebook Chapter 6: C

GANs in Action 914 Dec 21, 2022
LTR_CrossEncoder: Legal Text Retrieval Zalo AI Challenge 2021

LTR_CrossEncoder: Legal Text Retrieval Zalo AI Challenge 2021 We propose a cross encoder model (LTR_CrossEncoder) for information retrieval, re-retrie

Xuan Hieu Duong 7 Jan 12, 2022
The official implementation of You Only Compress Once: Towards Effective and Elastic BERT Compression via Exploit-Explore Stochastic Nature Gradient.

You Only Compress Once: Towards Effective and Elastic BERT Compression via Exploit-Explore Stochastic Nature Gradient (paper) @misc{zhang2021compress,

46 Dec 07, 2022
Calculates carbon footprint based on fuel mix and discharge profile at the utility selected. Can create graphs and tabular output for fuel mix based on input file of series of power drawn over a period of time.

carbon-footprint-calculator Conda distribution ~/anaconda3/bin/conda install anaconda-client conda-build ~/anaconda3/bin/conda config --set anaconda_u

Seattle university Renewable energy research 7 Sep 26, 2022
Punctuation Restoration using Transformer Models for High-and Low-Resource Languages

Punctuation Restoration using Transformer Models This repository contins official implementation of the paper Punctuation Restoration using Transforme

Tanvirul Alam 142 Jan 01, 2023
An imperfect information game is a type of game with asymmetric information

DecisionHoldem An imperfect information game is a type of game with asymmetric information. Compared with perfect information game, imperfect informat

Decision AI 25 Dec 23, 2022
AdamW optimizer and cosine learning rate annealing with restarts

AdamW optimizer and cosine learning rate annealing with restarts This repository contains an implementation of AdamW optimization algorithm and cosine

Maksym Pyrozhok 133 Dec 20, 2022
Tandem Mass Spectrum Prediction with Graph Transformers

MassFormer This is the original implementation of MassFormer, a graph transformer for small molecule MS/MS prediction. Check out the preprint on arxiv

Röst Lab 13 Oct 27, 2022
VQMIVC - Vector Quantization and Mutual Information-Based Unsupervised Speech Representation Disentanglement for One-shot Voice Conversion

VQMIVC: Vector Quantization and Mutual Information-Based Unsupervised Speech Representation Disentanglement for One-shot Voice Conversion (Interspeech

Disong Wang 262 Dec 31, 2022
Dynamic Bottleneck for Robust Self-Supervised Exploration

Dynamic Bottleneck Introduction This is a TensorFlow based implementation for our paper on "Dynamic Bottleneck for Robust Self-Supervised Exploration"

Bai Chenjia 4 Nov 14, 2022
Contrastive Fact Verification

VitaminC This repository contains the dataset and models for the NAACL 2021 paper: Get Your Vitamin C! Robust Fact Verification with Contrastive Evide

47 Dec 19, 2022
"Structure-Augmented Text Representation Learning for Efficient Knowledge Graph Completion"(WWW 2021)

STAR_KGC This repo contains the source code of the paper accepted by WWW'2021. "Structure-Augmented Text Representation Learning for Efficient Knowled

Bo Wang 60 Dec 26, 2022
A basic implementation of Layer-wise Relevance Propagation (LRP) in PyTorch.

Layer-wise Relevance Propagation (LRP) in PyTorch Basic unsupervised implementation of Layer-wise Relevance Propagation (Bach et al., Montavon et al.)

Kai Fabi 28 Dec 26, 2022
The final project of "Applying AI to 2D Medical Imaging Data" of "AI for Healthcare" nanodegree - Udacity.

Pneumonia Detection from X-Rays Project Overview In this project, you will apply the skills that you have acquired in this 2D medical imaging course t

Omar Laham 1 Jan 14, 2022