Deep ViT Features as Dense Visual Descriptors

Overview

dino-vit-features

[paper] [project page]

Official implementation of the paper "Deep ViT Features as Dense Visual Descriptors".

teaser

We demonstrate the effectiveness of deep features extracted from a self-supervised, pre-trained ViT model (DINO-ViT) as dense patch descriptors via real-world vision tasks: (a-b) co-segmentation & part co-segmentation: given a set of input images (e.g., 4 input images), we automatically co-segment semantically common foreground objects (e.g., animals), and then further partition them into common parts; (c-d) point correspondence: given a pair of input images, we automatically extract a sparse set of corresponding points. We tackle these tasks by applying only lightweight, simple methodologies such as clustering or binning, to deep ViT features.

Setup

Our code is developed in pytorch on and requires the following modules: tqdm, faiss, timm, matplotlib, pydensecrf, opencv, scikit-learn. We use python=3.9 but our code should be runnable on any version above 3.6. We recomment running our code with any CUDA supported GPU for faster performance. We recommend setting the running environment via Anaconda by running the following commands:

$ conda env create -f env/dino-vit-feats-env.yml
$ conda activate dino-vit-feats-env

Otherwise, run the following commands in your conda environment:

$ conda install pytorch torchvision torchaudio cudatoolkit=11 -c pytorch
$ conda install tqdm
$ conda install -c conda-forge faiss
$ conda install -c conda-forge timm 
$ conda install matplotlib
$ pip install opencv-python
$ pip install git+https://github.com/lucasb-eyer/pydensecrf.git
$ conda install -c anaconda scikit-learn

ViT Extractor

We provide a wrapper class for a ViT model to extract dense visual descriptors in extractor.py. You can extract descriptors to .pt files using the following command:

python extractor.py --image_path 
   
     --output_path 
    

    
   

You can specify the pretrained model using the --model flag with the following options:

  • dino_vits8, dino_vits16, dino_vitb8, dino_vitb16 from the DINO repo.
  • vit_small_patch8_224, vit_small_patch16_224, vit_base_patch8_224, vit_base_patch16_224 from the timm repo.

You can specify the stride of patch extracting layer to increase resolution using the --stride flag.

Part Co-segmentation Open In Colab

We provide a notebook for running on a single example in part_cosegmentation.ipynb.

To run on several image sets, arrange each set in a directory, inside a data root directory:


   
    
|
|_ 
    
     
|  |
|  |_ img1.png
|  |_ img2.png
|   
|_ 
     
      
   |
   |_ img1.png
   |_ img2.png
   |_ img3.png
...

     
    
   

The following command will produce results in the specified :

python part_cosegmentation.py --root_dir 
   
     --save_dir 
    

    
   

Note: The default configuration in part_cosegmentation.ipynb is suited for running on small sets (e.g. < 10). Increase amount of num_crop_augmentations for more stable results (and increased runtime). The default configuration in part_cosegmentation.py is suited for larger sets (e.g. >> 10).

Co-segmentation Open In Colab

We provide a notebook for running on a single example in cosegmentation.ipynb.

To run on several image sets, arrange each set in a directory, inside a data root directory:


   
    
|
|_ 
    
     
|  |
|  |_ img1.png
|  |_ img2.png
|   
|_ 
     
      
   |
   |_ img1.png
   |_ img2.png
   |_ img3.png
...

     
    
   

The following command will produce results in the specified :

python cosegmentation.py --root_dir 
   
     --save_dir 
    

    
   

Point Correspondences Open In Colab

We provide a notebook for running on a single example in correpondences.ipynb.

To run on several image pairs, arrange each image pair in a directory, inside a data root directory:


   
    
|
|_ 
    
     
|  |
|  |_ img1.png
|  |_ img2.png
|   
|_ 
     
      
   |
   |_ img1.png
   |_ img2.png
...

     
    
   

The following command will produce results in the specified :

python correspondences.py --root_dir 
   
     --save_dir 
    

    
   

Citation

If you found this repository useful please consider starring and citing :

@article{amir2021deep,
    author    = {Shir Amir and Yossi Gandelsman and Shai Bagon and Tali Dekel},
    title     = {Deep ViT Features as Dense Visual Descriptors},
    journal   = {arXiv preprint arXiv:2112.05814},
    year      = {2021}
}
Owner
Shir Amir
Graduate Student @ Weizmann Institute of Science
Shir Amir
codes for Image Inpainting with External-internal Learning and Monochromic Bottleneck

Image Inpainting with External-internal Learning and Monochromic Bottleneck This repository is for the CVPR 2021 paper: 'Image Inpainting with Externa

97 Nov 29, 2022
Fast and Simple Neural Vocoder, the Multiband RNNMS

Multiband RNN_MS Fast and Simple vocoder, Multiband RNN_MS. Demo Quick training How to Use System Details Results References Demo ToDO: Link super gre

tarepan 5 Jan 11, 2022
This is a collection of simple PyTorch implementations of neural networks and related algorithms. These implementations are documented with explanations,

labml.ai Deep Learning Paper Implementations This is a collection of simple PyTorch implementations of neural networks and related algorithms. These i

labml.ai 16.4k Jan 09, 2023
SalFBNet: Learning Pseudo-Saliency Distribution via Feedback Convolutional Networks

SalFBNet This repository includes Pytorch implementation for the following paper: SalFBNet: Learning Pseudo-Saliency Distribution via Feedback Convolu

12 Aug 12, 2022
An experiment on the performance of homemade Q-learning AIs in Agar.io depending on their state representation and available actions

Agar.io_Q-Learning_AI An experiment on the performance of homemade Q-learning AIs in Agar.io depending on their state representation and available act

1 Jun 09, 2022
Y. Zhang, Q. Yao, W. Dai, L. Chen. AutoSF: Searching Scoring Functions for Knowledge Graph Embedding. IEEE International Conference on Data Engineering (ICDE). 2020

AutoSF The code for our paper "AutoSF: Searching Scoring Functions for Knowledge Graph Embedding" and this paper has been accepted by ICDE2020. News:

AutoML Research 64 Dec 17, 2022
Rank1 Conversation Emotion Detection Task

Rank1-Conversation_Emotion_Detection_Task accuracy macro-f1 recall 0.826 0.7544 0.719 基于预训练模型和时序预测模型的对话情感探测任务 1 摘要 针对对话情感探测任务,本文将其分为文本分类和时间序列预测两个子任务,分

Yuchen Han 2 Nov 28, 2021
Implementation of MA-Trace - a general-purpose multi-agent RL algorithm for cooperative environments.

Off-Policy Correction For Multi-Agent Reinforcement Learning This repository is the official implementation of Off-Policy Correction For Multi-Agent R

4 Aug 18, 2022
PyTorch Implementation of Vector Quantized Variational AutoEncoders.

Pytorch implementation of VQVAE. This paper combines 2 tricks: Vector Quantization (check out this amazing blog for better understanding.) Straight-Th

Vrushank Changawala 2 Oct 06, 2021
Official repository for "PAIR: Planning and Iterative Refinement in Pre-trained Transformers for Long Text Generation"

pair-emnlp2020 Official repository for the paper: Xinyu Hua and Lu Wang: PAIR: Planning and Iterative Refinement in Pre-trained Transformers for Long

Xinyu Hua 31 Oct 13, 2022
根据midi文件演奏“风物之诗琴”的脚本 "Windsong Lyre" auto play

Genshin-lyre-auto-play 简体中文 | English 简介 根据midi文件演奏“风物之诗琴”的脚本。由Python驱动,在此承诺, ⚠️ 项目内绝不含任何能够引起安全问题的代码。 前排提示:所有键盘在动但是原神没反应的都是因为没有管理员权限,双击run.bat或者以管理员模式

御坂17032号 386 Jan 01, 2023
pytorch implementation of trDesign

trdesign-pytorch This repository is a PyTorch implementation of the trDesign paper based on the official TensorFlow implementation. The initial port o

Learn Ventures Inc. 41 Dec 29, 2022
A custom DeepStack model that has been trained detecting ONLY the USPS logo

This repository provides a custom DeepStack model that has been trained detecting ONLY the USPS logo. This was created after I discovered that the Deepstack OpenLogo custom model I was using did not

Stephen Stratoti 9 Dec 27, 2022
Code for the ICML 2021 paper: "ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision"

ViLT Code for the paper: "ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision" Install pip install -r requirements.txt pip

Wonjae Kim 922 Jan 01, 2023
Classification models 1D Zoo - Keras and TF.Keras

Classification models 1D Zoo - Keras and TF.Keras This repository contains 1D variants of popular CNN models for classification like ResNets, DenseNet

Roman Solovyev 12 Jan 06, 2023
R3Det based on mmdet 2.19.0

R3Det: Refined Single-Stage Detector with Feature Refinement for Rotating Object Installation # install mmdetection first if you haven't installed it

SJTU-Thinklab-Det 38 Dec 15, 2022
An implementation of the 1. Parallel, 2. Streaming, 3. Randomized SVD using MPI4Py

PYPARSVD This implementation allows for a singular value decomposition which is: Distributed using MPI4Py Streaming - data can be shown in batches to

Romit Maulik 44 Dec 31, 2022
PyTorch implementation of Anomaly Transformer: Time Series Anomaly Detection with Association Discrepancy

Anomaly Transformer in PyTorch This is an implementation of Anomaly Transformer: Time Series Anomaly Detection with Association Discrepancy. This pape

spencerbraun 160 Dec 19, 2022
Multi-Output Gaussian Process Toolkit

Multi-Output Gaussian Process Toolkit Paper - API Documentation - Tutorials & Examples The Multi-Output Gaussian Process Toolkit is a Python toolkit f

GAMES 113 Nov 25, 2022
CLEAR algorithm for multi-view data association

CLEAR: Consistent Lifting, Embedding, and Alignment Rectification Algorithm The Matlab, Python, and C++ implementation of the CLEAR algorithm, as desc

MIT Aerospace Controls Laboratory 30 Jan 02, 2023