LTR_CrossEncoder: Legal Text Retrieval Zalo AI Challenge 2021

Overview

LTR_CrossEncoder: Legal Text Retrieval Zalo AI Challenge 2021

We propose a cross encoder model (LTR_CrossEncoder) for information retrieval, re-retrieval text relevant base on result of elasticsearch

  • Model achieved 0.747 F2 score in public test (Legal Text Retrieval Zalo AI Challenge 2021)
  • If using elasticsearch only, our F2 score is 0.54

Algorithm design

Our algorithm includes two key components:

  • Elasticsearch
  • Cross Encoder Model

Elasticsearch

Elasticsearch is used for filtering top-k most relevant articles based on BM25 score.

Cross Encoder Model

model

Our model accepts query, article text (passage) and article title as inputs and outputs a relevant score of that query and that article. Higher score, more relavant. We use pretrained vinai/phobert-base and CrossEntropyLoss or BCELoss as loss function

Train dataset

Non-relevant samples in dataset are obtained by top-10 result of elasticsearch, the training data (train_data_model.json) has format as follow:

[
    {
        "question_id": "..."
        "question": "..."
        "relevant_articles":[
            {
                "law_id": "..."
                "article_id": "..."
                "title": "..."
                "text": "..."
            },
            ...
        ]
        "non_relevant_articles":[
            {
                "law_id": "..."
                "article_id": "..."
                "title": "..."
                "text": "..."
            },
            ...
        ]
    },
    ...
]

Test dataset

First we use elasticsearch to obtain k relevant candidates (k=top-50 result of elasticsearch), then LTR_CrossEncoder classify which actual relevant article. The test data (test_data_model.json) has format as follow:

[
    {
        "question_id": "..."
        "question": "..."
        "articles":[
            {
                "law_id": "..."
                "article_id": "..."
                "title": "..."
                "text": "..."
            },
            ...
        ]
    },
    ...
]

Training

Run the following bash file to train model:

bash run_phobert.sh

Inference

We also provide model checkpoints. Please download these checkpoints if you want to make inference on a new text file without training the models from scratch. Create new checkpoint folder, unzip model file and push it in checkpoint folder. https://drive.google.com/file/d/1oT8nlDIAatx3XONN1n5eOgYTT6Lx_h_C/view?usp=sharing

Run the following bash file to infer test dataset:

bash run_predict.sh
Owner
Xuan Hieu Duong
Xuan Hieu Duong
Analysis code and Latex source of the manuscript describing the conditional permutation test of confounding bias in predictive modelling.

Git repositoty of the manuscript entitled Statistical quantification of confounding bias in predictive modelling by Tamas Spisak The manuscript descri

PNI - Predictive Neuroimaging Lab, University Hospital Essen, Germany 0 Nov 22, 2021
Codebase for Inducing Causal Structure for Interpretable Neural Networks

Interchange Intervention Training (IIT) Codebase for Inducing Causal Structure for Interpretable Neural Networks Release Notes 12/01/2021: Code and Pa

Zen 6 Oct 10, 2022
FAST-RIR: FAST NEURAL DIFFUSE ROOM IMPULSE RESPONSE GENERATOR

This is the official implementation of our neural-network-based fast diffuse room impulse response generator (FAST-RIR) for generating room impulse responses (RIRs) for a given acoustic environment.

Anton Jeran Ratnarajah 89 Dec 22, 2022
Synthetic Humans for Action Recognition, IJCV 2021

SURREACT: Synthetic Humans for Action Recognition from Unseen Viewpoints Gül Varol, Ivan Laptev and Cordelia Schmid, Andrew Zisserman, Synthetic Human

Gul Varol 59 Dec 14, 2022
VolumeGAN - 3D-aware Image Synthesis via Learning Structural and Textural Representations

VolumeGAN - 3D-aware Image Synthesis via Learning Structural and Textural Representations 3D-aware Image Synthesis via Learning Structural and Textura

GenForce: May Generative Force Be with You 116 Dec 26, 2022
A repository for benchmarking neural vocoders by their quality and speed.

License The majority of VocBench is licensed under CC-BY-NC, however portions of the project are available under separate license terms: Wavenet, Para

Meta Research 177 Dec 12, 2022
Measuring Coding Challenge Competence With APPS

Measuring Coding Challenge Competence With APPS This is the repository for Measuring Coding Challenge Competence With APPS by Dan Hendrycks*, Steven B

Dan Hendrycks 218 Dec 27, 2022
Instance-wise Occlusion and Depth Orders in Natural Scenes (CVPR 2022)

Instance-wise Occlusion and Depth Orders in Natural Scenes Official source code. Appears at CVPR 2022 This repository provides a new dataset, named In

27 Dec 27, 2022
ADB-IP-ROTATION - Use your mobile phone to gain a temporary IP address using ADB and data tethering

ADB IP ROTATE This an Python script based on Android Debug Bridge (adb) shell sc

Dor Bismuth 2 Jul 12, 2022
Pytorch code for our paper Beyond ImageNet Attack: Towards Crafting Adversarial Examples for Black-box Domains)

Beyond ImageNet Attack: Towards Crafting Adversarial Examples for Black-box Domains (ICLR'2022) This is the Pytorch code for our paper Beyond ImageNet

Alibaba-AAIG 37 Nov 23, 2022
The project covers common metrics for super-resolution performance evaluation.

Super-Resolution Performance Evaluation Code The project covers common metrics for super-resolution performance evaluation. Metrics support The script

xmy 10 Aug 03, 2022
This is an official implementation for "SimMIM: A Simple Framework for Masked Image Modeling".

SimMIM By Zhenda Xie*, Zheng Zhang*, Yue Cao*, Yutong Lin, Jianmin Bao, Zhuliang Yao, Qi Dai and Han Hu*. This repo is the official implementation of

Microsoft 674 Dec 26, 2022
Distributing Deep Learning Hyperparameter Tuning for 3D Medical Image Segmentation

DistMIS Distributing Deep Learning Hyperparameter Tuning for 3D Medical Image Segmentation. DistriMIS Distributing Deep Learning Hyperparameter Tuning

HiEST 2 Sep 09, 2022
Disentangled Lifespan Face Synthesis

Disentangled Lifespan Face Synthesis Project Page | Paper Demo on Colab Preparation Please follow this github to prepare the environments and dataset.

何森 50 Sep 20, 2022
1st place solution in CCF BDCI 2021 ULSEG challenge

1st place solution in CCF BDCI 2021 ULSEG challenge This is the source code of the 1st place solution for ultrasound image angioma segmentation task (

Chenxu Peng 30 Nov 22, 2022
Source code for our paper "Empathetic Response Generation with State Management"

Source code for our paper "Empathetic Response Generation with State Management" this repository is maintained by both Jun Gao and Yuhan Liu Model Ove

Yuhan Liu 3 Oct 08, 2022
Semi-SDP Semi-supervised parser for semantic dependency parsing.

Semi-SDP Semi-supervised parser for semantic dependency parsing. This repo contains the code used for the semi-supervised semantic dependency parser i

12 Sep 17, 2021
Code to reproduce the experiments from our NeurIPS 2021 paper " The Limitations of Large Width in Neural Networks: A Deep Gaussian Process Perspective"

Code To run: python runner.py new --save SAVE_NAME --data PATH_TO_DATA_DIR --dataset DATASET --model model_name [options] --n 1000 - train - t

Geoff Pleiss 5 Dec 12, 2022
Feed forward VQGAN-CLIP model, where the goal is to eliminate the need for optimizing the latent space of VQGAN for each input prompt

Feed forward VQGAN-CLIP model, where the goal is to eliminate the need for optimizing the latent space of VQGAN for each input prompt. This is done by

Mehdi Cherti 135 Dec 30, 2022
Keras Image Embeddings using Contrastive Loss

Image to Embedding projection in vector space. Implementation in keras and tensorflow of batch all triplet loss for one-shot/few-shot learning.

Shravan Anand K 5 Mar 21, 2022