DC3: A Learning Method for Optimization with Hard Constraints

Related tags

Deep LearningDC3
Overview

DC3: A learning method for optimization with hard constraints

This repository is by Priya L. Donti, David Rolnick, and J. Zico Kolter and contains the PyTorch source code to reproduce the experiments in our paper "DC3: A learning method for optimization with hard constraints."

If you find this repository helpful in your publications, please consider citing our paper.

@inproceedings{donti2021dc3,
  title={DC3: A learning method for optimization with hard constraints},
  author={Donti, Priya and Rolnick, David and Kolter, J Zico},
  booktitle={International Conference on Learning Representations},
  year={2021}
}

Introduction

Large optimization problems with hard constraints arise in many settings, yet classical solvers are often prohibitively slow, motivating the use of deep networks as cheap "approximate solvers." Unfortunately, naive deep learning approaches typically cannot enforce the hard constraints of such problems, leading to infeasible solutions. In this work, we present Deep Constraint Completion and Correction (DC3), an algorithm to address this challenge. Specifically, this method enforces feasibility via a differentiable procedure, which implicitly completes partial solutions to satisfy equality constraints and unrolls gradient-based corrections to satisfy inequality constraints. We demonstrate the effectiveness of DC3 in both synthetic optimization tasks and the real-world setting of AC optimal power flow, where hard constraints encode the physics of the electrical grid. In both cases, DC3 achieves near-optimal objective values while preserving feasibility.

Dependencies

  • Python 3.x
  • PyTorch >= 1.8
  • numpy/scipy/pandas
  • osqp: State-of-the-art QP solver
  • qpth: Differentiable QP solver for PyTorch
  • ipopt: Interior point solver
  • pypower: Power flow and optimal power flow solvers
  • argparse: Input argument parsing
  • pickle: Object serialization
  • hashlib: Hash functions (used to generate folder names)
  • setproctitle: Set process titles
  • waitGPU (optional): Intelligently set CUDA_VISIBLE_DEVICES

Instructions

Dataset generation

Datasets for the experiments presented in our paper are available in the datasets folder. These datasets can be generated by running the Python script make_dataset.py within each subfolder (simple, nonconvex, and acopf) corresponding to the different problem types we test.

Running experiments

Our method and baselines can be run using the following Python files:

  • method.py: Our method (DC3)
  • baseline_nn.py: Simple deep learning baseline (NN)
  • baseline_eq_nn.py: Supervised deep learning baseline with completion (Eq. NN)
  • baseline_opt.py: Traditional optimizers (Optimizer)

See each file for relevant flags to set the problem type and method parameters. Notably:

  • --probType: Problem setting to test (simple, nonconvex, or acopf57)
  • --simpleVar, --simpleIneq, simpleEq, simpleEx: If the problem setting is simple, the number of decision variables, inequalities, equalities, and datapoints, respectively.
  • --nonconvexVar, --nonconvexIneq, nonconvexEq, nonconvexEx: If the problem setting is nonconvex, the number of decision variables, inequalities, equalities, and datapoints, respectively.

Reproducing paper experiments

You can reproduce the experiments run in our paper (including baselines and ablations) via the bash script run_expers.sh. For instance, the following commands can be used to run these experiments, 8 jobs at a time:

bash run_expers.sh > commands
cat commands | xargs -n1 -P8 -I{} /bin/sh -c "{}"

The script load_results.py can be run to aggregate these results (both while experiments are running, and after they are done). In particular, this script outputs a summary of results across different replicates of the same experiment (results_summary.dict) and information on how many jobs of each type are running or done (exper_status.dict).

Generating tables

Tables can be generated via the Jupyter notebook ResultsViz.ipynb. This notebook expects the dictionary results_summary.dict as input; the version of this dictionary generated while running the experiments in the paper is available in this repository.

Owner
CMU Locus Lab
Zico Kolter's Research Group
CMU Locus Lab
Static Features Classifier - A static features classifier for Point-Could clusters using an Attention-RNN model

Static Features Classifier This is a static features classifier for Point-Could

ABDALKARIM MOHTASIB 1 Jan 25, 2022
PyKaldi GOP-DNN on Epa-DB

PyKaldi GOP-DNN on Epa-DB This repository has the tools to run a PyKaldi GOP-DNN algorithm on Epa-DB, a database of non-native English speech by Spani

18 Dec 14, 2022
An educational AI robot based on NVIDIA Jetson Nano.

JetBot Looking for a quick way to get started with JetBot? Many third party kits are now available! JetBot is an open-source robot based on NVIDIA Jet

NVIDIA AI IOT 2.6k Dec 29, 2022
A simple, fully convolutional model for real-time instance segmentation.

You Only Look At CoefficienTs ██╗ ██╗ ██████╗ ██╗ █████╗ ██████╗████████╗ ╚██╗ ██╔╝██╔═══██╗██║ ██╔══██╗██╔════╝╚══██╔══╝ ╚██

Daniel Bolya 4.6k Dec 30, 2022
Unofficial Tensorflow-Keras implementation of Fastformer based on paper [Fastformer: Additive Attention Can Be All You Need](https://arxiv.org/abs/2108.09084).

Fastformer-Keras Unofficial Tensorflow-Keras implementation of Fastformer based on paper Fastformer: Additive Attention Can Be All You Need. Tensorflo

Yam Peleg 10 Jan 30, 2022
Official PyTorch implementation of PS-KD

Self-Knowledge Distillation with Progressive Refinement of Targets (PS-KD) Accepted at ICCV 2021, oral presentation Official PyTorch implementation of

61 Dec 28, 2022
OpenDILab Multi-Agent Environment

Go-Bigger: Multi-Agent Decision Intelligence Environment GoBigger Doc (中文版) Ongoing 2021.11.13 We are holding a competition —— Go-Bigger: Multi-Agent

OpenDILab 441 Jan 05, 2023
The Rich Get Richer: Disparate Impact of Semi-Supervised Learning

The Rich Get Richer: Disparate Impact of Semi-Supervised Learning Preprocess file of the dataset used in implicit sub-populations: (Demographic groups

<a href=[email protected]"> 4 Oct 14, 2022
tf2onnx - Convert TensorFlow, Keras and Tflite models to ONNX.

tf2onnx converts TensorFlow (tf-1.x or tf-2.x), tf.keras and tflite models to ONNX via command line or python api.

Open Neural Network Exchange 1.8k Jan 08, 2023
This code is a toolbox that uses Torch library for training and evaluating the ERFNet architecture for semantic segmentation.

ERFNet This code is a toolbox that uses Torch library for training and evaluating the ERFNet architecture for semantic segmentation. NEW!! New PyTorch

Edu 104 Jan 05, 2023
DeepDiffusion: Unsupervised Learning of Retrieval-adapted Representations via Diffusion-based Ranking on Latent Feature Manifold

DeepDiffusion Introduction This repository provides the code of the DeepDiffusion algorithm for unsupervised learning of retrieval-adapted representat

4 Nov 15, 2022
List of papers, code and experiments using deep learning for time series forecasting

Deep Learning Time Series Forecasting List of state of the art papers focus on deep learning and resources, code and experiments using deep learning f

Alexander Robles 2k Jan 06, 2023
pixelNeRF: Neural Radiance Fields from One or Few Images

pixelNeRF: Neural Radiance Fields from One or Few Images Alex Yu, Vickie Ye, Matthew Tancik, Angjoo Kanazawa UC Berkeley arXiv: http://arxiv.org/abs/2

Alex Yu 1k Jan 04, 2023
Wordplay, an artificial Intelligence based crossword puzzle solver.

Wordplay, AI based crossword puzzle solver A crossword is a word puzzle that usually takes the form of a square or a rectangular grid of white- and bl

Vaibhaw 4 Nov 16, 2022
Data manipulation and transformation for audio signal processing, powered by PyTorch

torchaudio: an audio library for PyTorch The aim of torchaudio is to apply PyTorch to the audio domain. By supporting PyTorch, torchaudio follows the

1.9k Dec 28, 2022
MLP-Like Vision Permutator for Visual Recognition (PyTorch)

Vision Permutator: A Permutable MLP-Like Architecture for Visual Recognition (arxiv) This is a Pytorch implementation of our paper. We present Vision

Qibin (Andrew) Hou 162 Nov 28, 2022
Teaches a student network from the knowledge obtained via training of a larger teacher network

Distilling-the-knowledge-in-neural-network Teaches a student network from the knowledge obtained via training of a larger teacher network This is an i

Abhishek Sinha 146 Dec 11, 2022
​ This is the Pytorch implementation of Progressive Attentional Manifold Alignment.

PAMA This is the Pytorch implementation of Progressive Attentional Manifold Alignment. Requirements python 3.6 pytorch 1.2.0+ PIL, numpy, matplotlib C

98 Nov 15, 2022
Beta Shapley: a Unified and Noise-reduced Data Valuation Framework for Machine Learning

Beta Shapley: a Unified and Noise-reduced Data Valuation Framework for Machine Learning This repository provides an implementation of the paper Beta S

Yongchan Kwon 28 Nov 10, 2022
Theano is a Python library that allows you to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently. It can use GPUs and perform efficient symbolic differentiation.

============================================================================================================ `MILA will stop developing Theano https:

9.6k Dec 31, 2022