CLOOB: Modern Hopfield Networks with InfoLOOB Outperform CLIP

Related tags

Deep Learningcloob
Overview

CLOOB: Modern Hopfield Networks with InfoLOOB Outperform CLIP

Andreas Fürst* 1, Elisabeth Rumetshofer* 1, Viet Tran1, Hubert Ramsauer1, Fei Tang3, Johannes Lehner1, David Kreil2, Michael Kopp2, Günter Klambauer1, Angela Bitto-Nemling1, Sepp Hochreiter1 2

1 ELLIS Unit Linz and LIT AI Lab, Institute for Machine Learning, Johannes Kepler University Linz, Austria
2 Institute of Advanced Research in Artificial Intelligence (IARAI)
3 HERE Technologies
* Equal contribution


Detailed blog post on this paper at this link.

The full paper is available here.


Implementation of CLOOB

This repository contains the implemenation of CLOOB used to obtain the results reported in the paper. The implementation is based on OpenCLIP, an open source implementation of OpenAI's CLIP.

Setup

We provide an 'environment.yml' file to set up a conda environment with all required packages. Run the following command to clone the repository and create the environment.

# Clone repository and swtich into the directory
git clone https://github.com/ml-jku/cloob
cd cloob

# Create the environment and activate it
conda env create --file environment.yml
conda activate cloob

# Additionally, webdataset needs to be installed from git repo for pre-training on YFCC 
pip install git+https://github.com/tmbdev/webdataset.git

# Add the directory to the PYTHONPATH environment variable
export PYTHONPATH="$PYTHONPATH:$PWD/src"

Data

For pre-training we use the two datasets supported by OpenCLIP, namely Conceptual Captions and YFCC.

Conceptual Captions

OpenCLIP already provides a script to download and prepare the Conceptual Captions dataset, which contains 2.89M training images and 13k validation images. First, download the Conceptual Captions URLs and then run the script gather_cc.py.

python3 src/data/gather_cc.py path/to/Train_GCC-training.tsv path/to/Validation_GCC-1.1.0-Validation.tsv

YFCC

We use the same subset of ~15M images from the YFCC100M dataset as CLIP. They provide a list of (line number, photo identifier, photo hash) of each image contained in this subset here.

For more information see YFCC100m Subset on OpenAI's github.

Downstream Tasks

In the paper we report results on several downstream tasks. Except for ImageNet we provide links to already pre-processed versions (where necessary) of the respective test set.

Dataset Description Official Processed
Birdsnap This dataset contains images of North American bird species, however
our dataset is smaller than reported in CLIP as some samples are no longer available.
Link Link
Country211 This dataset was published in CLIP and is a small subset of the YFCC100m dataset.
It consists of photos that can be assigned to 211 countries via GPS coordinates.
For each country 200 photos are sampled for the training set and 100 for testing.
Link Link
Flowers102 Images of 102 flower categories commonly occuring in the United Kingdom were collected.
Several classes are very similar and there is a large variation in scale, pose and lighting.
Link Link
GTSRB This dataset was released for a challenge held at the IJCNN 2011.
The dataset contains images of german traffic signs from more than 40 classes.
Link Link
Stanford Cars This dataset contains images of 196 car models at the level of make,
model and year (e.g. Tesla Model S Sedan 2012).
Link Link
UCF101 The dataset has been created by extracting the middle frame from each video. Link Link
ImageNet This dataset spans 1000 object classes and contains 1,281,167 training images,
50,000 validation images and 100,000 test images.
Link -
ImageNet v2 The ImageNetV2 dataset contains new test data for the ImageNet benchmark. Link -

Usage

In the following there is an example command for pretraining on CC with an effective batch size of 512 when used on 4 GPUs.

/conceptual_captions/Train-GCC-training_output.csv" \ --val-data=" /conceptual_captions/Validation_GCC-1.1.0-Validation_output.csv" \ --path-data=" /conceptual_captions" \ --imagenet-val=" /imagenet/val" \ --warmup 20000 \ --batch-size=128 \ --lr=1e-3 \ --wd=0.1 \ --lr-scheduler="cosine-restarts" \ --restart-cycles=10 \ --epochs=70 \ --method="cloob" \ --init-inv-tau=30 \ --init-scale-hopfield=8 \ --workers=8 \ --model="RN50" \ --dist-url="tcp://127.0.0.1:6100" \ --batch-size-eval=512 ">
python -u src/training/main.py \
--train-data="
       
        /conceptual_captions/Train-GCC-training_output.csv
        "
        \
--val-data="
       
        /conceptual_captions/Validation_GCC-1.1.0-Validation_output.csv
        "
        \
--path-data="
       
        /conceptual_captions
        "
        \
--imagenet-val="
       
        /imagenet/val
        "
        \
--warmup 20000 \
--batch-size=128 \
--lr=1e-3 \
--wd=0.1 \
--lr-scheduler="cosine-restarts" \
--restart-cycles=10 \
--epochs=70 \
--method="cloob" \
--init-inv-tau=30 \
--init-scale-hopfield=8 \
--workers=8 \
--model="RN50" \
--dist-url="tcp://127.0.0.1:6100" \
--batch-size-eval=512

Zeroshot evaluation of downstream tasks

We provide a Jupyter notebook to perform zeroshot evaluation with a trained model.

LICENSE

MIT LICENSE

Owner
Institute for Machine Learning, Johannes Kepler University Linz
Software of the Institute for Machine Learning, JKU Linz
Institute for Machine Learning, Johannes Kepler University Linz
multimodal transformer

This repo holds the code to perform experiments with the multimodal autoregressive probabilistic model Transflower. Overview of the repo It is structu

Guillermo Valle 68 Dec 13, 2022
TrackFormer: Multi-Object Tracking with Transformers

TrackFormer: Multi-Object Tracking with Transformers This repository provides the official implementation of the TrackFormer: Multi-Object Tracking wi

Tim Meinhardt 321 Dec 29, 2022
The official start-up code for paper "FFA-IR: Towards an Explainable and Reliable Medical Report Generation Benchmark."

FFA-IR The official start-up code for paper "FFA-IR: Towards an Explainable and Reliable Medical Report Generation Benchmark." The framework is inheri

Mingjie 28 Dec 16, 2022
Open source implementation of AceNAS: Learning to Rank Ace Neural Architectures with Weak Supervision of Weight Sharing

AceNAS This repo is the experiment code of AceNAS, and is not considered as an official release. We are working on integrating AceNAS as a built-in st

Yuge Zhang 6 Sep 07, 2022
Code for the ICCV2021 paper "Personalized Image Semantic Segmentation"

PSS: Personalized Image Semantic Segmentation Paper PSS: Personalized Image Semantic Segmentation Yu Zhang, Chang-Bin Zhang, Peng-Tao Jiang, Ming-Ming

张宇 15 Jul 09, 2022
Prometheus Exporter for data scraped from datenplattform.darmstadt.de

darmstadt-opendata-exporter Scrapes data from https://datenplattform.darmstadt.de and presents it in the Prometheus Exposition format. Pull requests w

Martin Weinelt 2 Apr 12, 2022
Pytorch implementation of CoCon: A Self-Supervised Approach for Controlled Text Generation

COCON_ICLR2021 This is our Pytorch implementation of COCON. CoCon: A Self-Supervised Approach for Controlled Text Generation (ICLR 2021) Alvin Chan, Y

alvinchangw 79 Dec 18, 2022
Official repository for the paper, MidiBERT-Piano: Large-scale Pre-training for Symbolic Music Understanding.

MidiBERT-Piano Authors: Yi-Hui (Sophia) Chou, I-Chun (Bronwin) Chen Introduction This is the official repository for the paper, MidiBERT-Piano: Large-

137 Dec 15, 2022
EMNLP 2021 paper The Devil is in the Detail: Simple Tricks Improve Systematic Generalization of Transformers.

Codebase for training transformers on systematic generalization datasets. The official repository for our EMNLP 2021 paper The Devil is in the Detail:

Csordás Róbert 57 Nov 21, 2022
A collection of IPython notebooks covering various topics.

ipython-notebooks This repo contains various IPython notebooks I've created to experiment with libraries and work through exercises, and explore subje

John Wittenauer 2.6k Jan 01, 2023
Inference pipeline for our participation in the FeTA challenge 2021.

feta-inference Inference pipeline for our participation in the FeTA challenge 2021. Team name: TRABIT Installation Download the two folders in https:/

Lucas Fidon 2 Apr 13, 2022
Label-Free Model Evaluation with Semi-Structured Dataset Representations

Label-Free Model Evaluation with Semi-Structured Dataset Representations Prerequisites This code uses the following libraries Python 3.7 NumPy PyTorch

8 Oct 06, 2022
The source code of the ICCV2021 paper "PIRenderer: Controllable Portrait Image Generation via Semantic Neural Rendering"

Website | ArXiv | Get Start | Video PIRenderer The source code of the ICCV2021 paper "PIRenderer: Controllable Portrait Image Generation via Semantic

Ren Yurui 261 Jan 09, 2023
code for "Feature Importance-aware Transferable Adversarial Attacks"

Feature Importance-aware Attack(FIA) This repository contains the code for the paper: Feature Importance-aware Transferable Adversarial Attacks (ICCV

Hengchang Guo 44 Nov 24, 2022
Аналитика доходности инвестиционного портфеля в Тинькофф брокере

Аналитика доходности инвестиционного портфеля Тиньков Видео на YouTube Для работы скрипта нужно установить три переменных окружения: export TINKOFF_TO

Alexey Goloburdin 64 Dec 17, 2022
Patch2Pix: Epipolar-Guided Pixel-Level Correspondences [CVPR2021]

Patch2Pix for Accurate Image Correspondence Estimation This repository contains the Pytorch implementation of our paper accepted at CVPR2021: Patch2Pi

Qunjie Zhou 199 Nov 29, 2022
PyTorch implementation of image classification models for CIFAR-10/CIFAR-100/MNIST/FashionMNIST/Kuzushiji-MNIST/ImageNet

PyTorch Image Classification Following papers are implemented using PyTorch. ResNet (1512.03385) ResNet-preact (1603.05027) WRN (1605.07146) DenseNet

1.2k Jan 04, 2023
This is an official pytorch implementation of Fast Fourier Convolution.

Fast Fourier Convolution (FFC) for Image Classification This is the official code of Fast Fourier Convolution for image classification on ImageNet. Ma

pkumi 199 Jan 03, 2023
“英特尔创新大师杯”深度学习挑战赛 赛道3:CCKS2021中文NLP地址相关性任务

基于 bert4keras 的一个baseline 不作任何 数据trick 单模 线上 最高可到 0.7891 # 基础 版 train.py 0.7769 # transformer 各层 cls concat 明神的trick https://xv44586.git

孙永松 7 Dec 28, 2021
Skipgram Negative Sampling in PyTorch

PyTorch SGNS Word2Vec's SkipGramNegativeSampling in Python. Yet another but quite general negative sampling loss implemented in PyTorch. It can be use

Jamie J. Seol 287 Dec 14, 2022