π-GAN: Periodic Implicit Generative Adversarial Networks for 3D-Aware Image Synthesis

Related tags

Deep Learningpi-GAN
Overview

π-GAN: Periodic Implicit Generative Adversarial Networks for 3D-Aware Image Synthesis

Project Page | Paper | Data

Eric Ryan Chan*, Marco Monteiro*, Petr Kellnhofer, Jiajun Wu, Gordon Wetzstein
*denotes equal contribution

This is the official implementation of the paper "π-GAN: Periodic Implicit Generative Adversarial Networks for 3D-Aware Image Synthesis".

π-GAN is a novel generative model for high-quality 3D aware image synthesis.

results2.mp4

Training a Model

The main training script can be found in train.py. Majority of hyperparameters for training and evaluation are set in the curriculums.py file. (see file for more details) We provide recommended curriculums for CelebA, Cats, and CARLA.

Relevant Flags:

Set the output directory: --output_dir=[output directory]

Set the model loading directory: --load_dir=[load directory]

Set the current training curriculum: --curriculum=[curriculum]

Set the port for distributed training: --port=[port]

To start training:

On one GPU for CelebA: CUDA_VISIBLE_DEVICES=0 python3 train.py --curriculum CelebA --output_dir celebAOutputDir

On multiple GPUs, simply list cuda visible devices in a comma-separated list: CUDA_VISIBLE_DEVICES=1,3 python3 train.py --curriculum CelebA --output_dir celebAOutputDir

To continue training from another run specify the --load_dir=path/to/directory flag.

Model Results and Evaluation

Evaluation Metrics

To generate real images for evaluation run python fid_evaluation --dataset CelebA --img_size 128 --num_imgs 8000. To calculate fid/kid/inception scores run python eval_metrics.py path/to/generator.pth --real_image_dir path/to/real_images/directory --curriculum CelebA --num_images 8000.

Rendering Images

python render_multiview_images.py path/to/generator.pth --curriculum CelebA --seeds 0 1 2 3

For best visual results, load the EMA parameters, use truncation, increase the resolution (e.g. to 512 x 512) and increase the number of depth samples (e.g. to 24 or 36).

Rendering Videos

python render_video.py path/to/generator.pth --curriculum CelebA --seeds 0 1 2 3

You can pass the flag --lock_view_dependence to remove view dependent effects. This can help mitigate distracting visual artifacts such as shifting eyebrows. However, locking view dependence may lower the visual quality of images (edges may be blurrier etc.)

Rendering Videos Interpolating between faces

python render_video_interpolation.py path/to/generator.pth --curriculum CelebA --seeds 0 1 2 3

Extracting 3D Shapes

python3 shape_extraction.py path/to/generator.pth --curriculum CelebA --seed 0

Pretrained Models

We provide pretrained models for CelebA, Cats, and CARLA.

CelebA: https://drive.google.com/file/d/1bRB4-KxQplJryJvqyEa8Ixkf_BVm4Nn6/view?usp=sharing

Cats: https://drive.google.com/file/d/1WBA-WI8DA7FqXn7__0TdBO0eO08C_EhG/view?usp=sharing

CARLA: https://drive.google.com/file/d/1n4eXijbSD48oJVAbAV4hgdcTbT3Yv4xO/view?usp=sharing

All zipped model files contain a generator.pth, ema.pth, and ema2.pth files. ema.pth used a decay of 0.999 and ema2.pth used a decay of 0.9999. All evaluation scripts will by default load the EMA from the file named ema.pth in the same directory as the generator.pth file.

Training Tips

If you have the resources, increasing the number of samples (steps) per ray will dramatically increase the quality of your 3D shapes. If you're looking for good shapes, e.g. for CelebA, try increasing num_steps and moving the back plane (ray_end) to allow the model to move the background back and capture the full head.

Training has been tested to work well on either two RTX 6000's or one RTX 8000. Training with smaller GPU's and batch sizes generally works fine, but it's also possible you'll encounter instability, especially at higher resolutions. Bubbles and artifacts that suddenly appear, or blurring in the tilted angles, are signs that training destabilized. This can usually be mitigated by training with a larger batch size or by reducing the learning rate.

Since the original implementation we added a pose identity component to the loss. Controlled by pos_lambda in the curriculum, the pose idedntity component helps ensure generated scenes share the same canonical pose. Empirically, it seems to improve 3D models, but may introduce a minor decrease in image quality scores.

Citation

If you find our work useful in your research, please cite:

@inproceedings{piGAN2021,
  title={pi-GAN: Periodic Implicit Generative Adversarial Networks for 3D-Aware Image Synthesis},
  author={Eric Chan and Marco Monteiro and Petr Kellnhofer and Jiajun Wu and Gordon Wetzstein},
  year={2021},
  booktitle={Proc. CVPR},
}
EgGateWayGetShell py脚本

EgGateWayGetShell_py 免责声明 由于传播、利用此文所提供的信息而造成的任何直接或者间接的后果及损失,均由使用者本人负责,作者不为此承担任何责任。 使用 python3 eg.py urls.txt 目标 title:锐捷网络-EWEB网管系统 port:4430 漏洞成因 ?p

榆木 61 Nov 09, 2022
ANEA: Automated (Named) Entity Annotation for German Domain-Specific Texts

ANEA The goal of Automatic (Named) Entity Annotation is to create a small annotated dataset for NER extracted from German domain-specific texts. Insta

Anastasia Zhukova 2 Oct 07, 2022
RL algorithm PPO and IRL algorithm AIRL written with Tensorflow.

RL algorithm PPO and IRL algorithm AIRL written with Tensorflow. They have a parallel sampling feature in order to increase computation speed (especially in high-performance computing (HPC)).

Fangjian Li 3 Dec 28, 2021
Comp445 project - Data Communications & Computer Networks

COMP-445 Data Communications & Computer Networks Change Python version in Conda

Peng Zhao 2 Oct 03, 2022
This is a pytorch implementation for the BST model from Alibaba https://arxiv.org/pdf/1905.06874.pdf

Behavior-Sequence-Transformer-Pytorch This is a pytorch implementation for the BST model from Alibaba https://arxiv.org/pdf/1905.06874.pdf This model

Jaime Ferrando Huertas 83 Jan 05, 2023
A highly efficient and modular implementation of Gaussian Processes in PyTorch

GPyTorch GPyTorch is a Gaussian process library implemented using PyTorch. GPyTorch is designed for creating scalable, flexible, and modular Gaussian

3k Jan 02, 2023
Audio-Visual Generalized Few-Shot Learning with Prototype-Based Co-Adaptation

Audio-Visual Generalized Few-Shot Learning with Prototype-Based Co-Adaptation The code repository for "Audio-Visual Generalized Few-Shot Learning with

Kaiaicy 3 Jun 27, 2022
MATLAB codes of the book "Digital Image Processing Fourth Edition" converted to Python

Digital Image Processing Python MATLAB codes of the book "Digital Image Processing Fourth Edition" converted to Python TO-DO: Refactor scripts, curren

Merve Noyan 24 Oct 16, 2022
Pytorch implementation of PTNet for high-resolution and longitudinal infant MRI synthesis

Pyramid Transformer Net (PTNet) Project | Paper Pytorch implementation of PTNet for high-resolution and longitudinal infant MRI synthesis. PTNet: A Hi

Xuzhe Johnny Zhang 6 Jun 08, 2022
An example of semantic segmentation using tensorflow in eager execution.

Semantic segmentation using Tensorflow eager execution Requirement Python 2.7+ Tensorflow-gpu OpenCv H5py Scikit-learn Numpy Imgaug Train with eager e

Iñigo Alonso Ruiz 25 Sep 29, 2022
An efficient and effective learning to rank algorithm by mining information across ranking candidates. This repository contains the tensorflow implementation of SERank model. The code is developed based on TF-Ranking.

SERank An efficient and effective learning to rank algorithm by mining information across ranking candidates. This repository contains the tensorflow

Zhihu 44 Oct 20, 2022
A higher performance pytorch implementation of DeepLab V3 Plus(DeepLab v3+)

A Higher Performance Pytorch Implementation of DeepLab V3 Plus Introduction This repo is an (re-)implementation of Encoder-Decoder with Atrous Separab

linhua 326 Nov 22, 2022
A Learning-based Camera Calibration Toolbox

Learning-based Camera Calibration A Learning-based Camera Calibration Toolbox Paper The pdf file can be found here. @misc{zhang2022learningbased,

Eason 14 Dec 21, 2022
The Power of Scale for Parameter-Efficient Prompt Tuning

The Power of Scale for Parameter-Efficient Prompt Tuning Implementation of soft embeddings from https://arxiv.org/abs/2104.08691v1 using Pytorch and H

Kip Parker 208 Dec 30, 2022
TargetAllDomainObjects - A python wrapper to run a command on against all users/computers/DCs of a Windows Domain

TargetAllDomainObjects A python wrapper to run a command on against all users/co

Podalirius 19 Dec 13, 2022
Code for our paper "MG-GAN: A Multi-Generator Model Preventing Out-of-Distribution Samples in Pedestrian Trajectory Prediction" published at ICCV 2021.

MG-GAN: A Multi-Generator Model Preventing Out-of-Distribution Samples in Pedestrian Trajectory Prediction This repository contains the code for the p

Sven 30 Jan 05, 2023
Reinforcement learning framework and algorithms implemented in PyTorch.

Reinforcement learning framework and algorithms implemented in PyTorch.

Robotic AI & Learning Lab Berkeley 2.1k Jan 04, 2023
A simple and extensible library to create Bayesian Neural Network layers on PyTorch.

Blitz - Bayesian Layers in Torch Zoo BLiTZ is a simple and extensible library to create Bayesian Neural Network Layers (based on whats proposed in Wei

Pi Esposito 722 Jan 08, 2023
Convolutional Neural Network to detect deforestation in the Amazon Rainforest

Convolutional Neural Network to detect deforestation in the Amazon Rainforest This project is part of my final work as an Aerospace Engineering studen

5 Feb 17, 2022
LLVIP: A Visible-infrared Paired Dataset for Low-light Vision

LLVIP: A Visible-infrared Paired Dataset for Low-light Vision Project | Arxiv | Abstract It is very challenging for various visual tasks such as image

CVSM Group - email: <a href=[email protected]"> 377 Jan 07, 2023