π-GAN: Periodic Implicit Generative Adversarial Networks for 3D-Aware Image Synthesis

Related tags

Deep Learningpi-GAN
Overview

π-GAN: Periodic Implicit Generative Adversarial Networks for 3D-Aware Image Synthesis

Project Page | Paper | Data

Eric Ryan Chan*, Marco Monteiro*, Petr Kellnhofer, Jiajun Wu, Gordon Wetzstein
*denotes equal contribution

This is the official implementation of the paper "π-GAN: Periodic Implicit Generative Adversarial Networks for 3D-Aware Image Synthesis".

π-GAN is a novel generative model for high-quality 3D aware image synthesis.

results2.mp4

Training a Model

The main training script can be found in train.py. Majority of hyperparameters for training and evaluation are set in the curriculums.py file. (see file for more details) We provide recommended curriculums for CelebA, Cats, and CARLA.

Relevant Flags:

Set the output directory: --output_dir=[output directory]

Set the model loading directory: --load_dir=[load directory]

Set the current training curriculum: --curriculum=[curriculum]

Set the port for distributed training: --port=[port]

To start training:

On one GPU for CelebA: CUDA_VISIBLE_DEVICES=0 python3 train.py --curriculum CelebA --output_dir celebAOutputDir

On multiple GPUs, simply list cuda visible devices in a comma-separated list: CUDA_VISIBLE_DEVICES=1,3 python3 train.py --curriculum CelebA --output_dir celebAOutputDir

To continue training from another run specify the --load_dir=path/to/directory flag.

Model Results and Evaluation

Evaluation Metrics

To generate real images for evaluation run python fid_evaluation --dataset CelebA --img_size 128 --num_imgs 8000. To calculate fid/kid/inception scores run python eval_metrics.py path/to/generator.pth --real_image_dir path/to/real_images/directory --curriculum CelebA --num_images 8000.

Rendering Images

python render_multiview_images.py path/to/generator.pth --curriculum CelebA --seeds 0 1 2 3

For best visual results, load the EMA parameters, use truncation, increase the resolution (e.g. to 512 x 512) and increase the number of depth samples (e.g. to 24 or 36).

Rendering Videos

python render_video.py path/to/generator.pth --curriculum CelebA --seeds 0 1 2 3

You can pass the flag --lock_view_dependence to remove view dependent effects. This can help mitigate distracting visual artifacts such as shifting eyebrows. However, locking view dependence may lower the visual quality of images (edges may be blurrier etc.)

Rendering Videos Interpolating between faces

python render_video_interpolation.py path/to/generator.pth --curriculum CelebA --seeds 0 1 2 3

Extracting 3D Shapes

python3 shape_extraction.py path/to/generator.pth --curriculum CelebA --seed 0

Pretrained Models

We provide pretrained models for CelebA, Cats, and CARLA.

CelebA: https://drive.google.com/file/d/1bRB4-KxQplJryJvqyEa8Ixkf_BVm4Nn6/view?usp=sharing

Cats: https://drive.google.com/file/d/1WBA-WI8DA7FqXn7__0TdBO0eO08C_EhG/view?usp=sharing

CARLA: https://drive.google.com/file/d/1n4eXijbSD48oJVAbAV4hgdcTbT3Yv4xO/view?usp=sharing

All zipped model files contain a generator.pth, ema.pth, and ema2.pth files. ema.pth used a decay of 0.999 and ema2.pth used a decay of 0.9999. All evaluation scripts will by default load the EMA from the file named ema.pth in the same directory as the generator.pth file.

Training Tips

If you have the resources, increasing the number of samples (steps) per ray will dramatically increase the quality of your 3D shapes. If you're looking for good shapes, e.g. for CelebA, try increasing num_steps and moving the back plane (ray_end) to allow the model to move the background back and capture the full head.

Training has been tested to work well on either two RTX 6000's or one RTX 8000. Training with smaller GPU's and batch sizes generally works fine, but it's also possible you'll encounter instability, especially at higher resolutions. Bubbles and artifacts that suddenly appear, or blurring in the tilted angles, are signs that training destabilized. This can usually be mitigated by training with a larger batch size or by reducing the learning rate.

Since the original implementation we added a pose identity component to the loss. Controlled by pos_lambda in the curriculum, the pose idedntity component helps ensure generated scenes share the same canonical pose. Empirically, it seems to improve 3D models, but may introduce a minor decrease in image quality scores.

Citation

If you find our work useful in your research, please cite:

@inproceedings{piGAN2021,
  title={pi-GAN: Periodic Implicit Generative Adversarial Networks for 3D-Aware Image Synthesis},
  author={Eric Chan and Marco Monteiro and Petr Kellnhofer and Jiajun Wu and Gordon Wetzstein},
  year={2021},
  booktitle={Proc. CVPR},
}
Free-duolingo-plus - Duolingo account creator that uses your invite code to get you free duolingo plus

free-duolingo-plus duolingo account creator that uses your invite code to get yo

1 Jan 06, 2022
Given a 2D triangle mesh, we could randomly generate cloud points that fill in the triangle mesh

generate_cloud_points Given a 2D triangle mesh, we could randomly generate cloud points that fill in the triangle mesh. Run python disp_mesh.py Or you

Peng Yu 2 Dec 24, 2021
arxiv-sanity, but very lite, simply providing the core value proposition of the ability to tag arxiv papers of interest and have the program recommend similar papers.

arxiv-sanity, but very lite, simply providing the core value proposition of the ability to tag arxiv papers of interest and have the program recommend similar papers.

Andrej 671 Dec 31, 2022
FPGA: Fast Patch-Free Global Learning Framework for Fully End-to-End Hyperspectral Image Classification

FPGA & FreeNet Fast Patch-Free Global Learning Framework for Fully End-to-End Hyperspectral Image Classification by Zhuo Zheng, Yanfei Zhong, Ailong M

Zhuo Zheng 92 Jan 03, 2023
Code for "Learning From Multiple Experts: Self-paced Knowledge Distillation for Long-tailed Classification", ECCV 2020 Spotlight

Learning From Multiple Experts: Self-paced Knowledge Distillation for Long-tailed Classification Implementation of "Learning From Multiple Experts: Se

27 Nov 05, 2022
ML From Scratch

ML from Scratch MACHINE LEARNING TOPICS COVERED - FROM SCRATCH Linear Regression Logistic Regression K Means Clustering K Nearest Neighbours Decision

Tanishq Gautam 66 Nov 02, 2022
这是一个mobilenet-yolov4-lite的库,把yolov4主干网络修改成了mobilenet,修改了Panet的卷积组成,使参数量大幅度缩小。

YOLOV4:You Only Look Once目标检测模型-修改mobilenet系列主干网络-在Keras当中的实现 2021年2月8日更新: 加入letterbox_image的选项,关闭letterbox_image后网络的map一般可以得到提升。

Bubbliiiing 65 Dec 01, 2022
Interactive dimensionality reduction for large datasets

BlosSOM 🌼 BlosSOM is a graphical environment for running semi-supervised dimensionality reduction with EmbedSOM. You can use it to explore multidimen

19 Dec 14, 2022
An Empirical Investigation of Model-to-Model Distribution Shifts in Trained Convolutional Filters

CNN-Filter-DB An Empirical Investigation of Model-to-Model Distribution Shifts in Trained Convolutional Filters Paul Gavrikov, Janis Keuper Paper: htt

Paul Gavrikov 18 Dec 30, 2022
YOLTv4 builds upon YOLT and SIMRDWN, and updates these frameworks to use the most performant version of YOLO, YOLOv4

YOLTv4 builds upon YOLT and SIMRDWN, and updates these frameworks to use the most performant version of YOLO, YOLOv4. YOLTv4 is designed to detect objects in aerial or satellite imagery in arbitraril

Adam Van Etten 161 Jan 06, 2023
An implementation of the research paper "Retina Blood Vessel Segmentation Using A U-Net Based Convolutional Neural Network"

Retina Blood Vessels Segmentation This is an implementation of the research paper "Retina Blood Vessel Segmentation Using A U-Net Based Convolutional

Srijarko Roy 23 Aug 20, 2022
A PyTorch Implementation of ViT (Vision Transformer)

ViT - Vision Transformer This is an implementation of ViT - Vision Transformer by Google Research Team through the paper "An Image is Worth 16x16 Word

Quan Nguyen 7 May 11, 2022
Our implementation used for the MICCAI 2021 FLARE Challenge titled 'Efficient Multi-Organ Segmentation Using SpatialConfiguartion-Net with Low GPU Memory Requirements'.

Efficient Multi-Organ Segmentation Using SpatialConfiguartion-Net with Low GPU Memory Requirements Our implementation used for the MICCAI 2021 FLARE C

Franz Thaler 3 Sep 27, 2022
Markov Attention Models

Introduction This repo contains code for reproducing the results in the paper Graphical Models with Attention for Context-Specific Independence and an

Vicarious 0 Dec 09, 2021
Repository for the paper "Exploring the Sensory Spaces of English Perceptual Verbs in Natural Language Data"

Sensory Spaces of English Perceptual Verbs This repository contains the code and collocational data described in the paper "Exploring the Sensory Spac

David Peng 0 Sep 07, 2021
Author: Wenhao Yu ([email protected]). ACL 2022. Commonsense Reasoning on Knowledge Graph for Text Generation

Diversifying Commonsense Reasoning Generation on Knowledge Graph Introduction -- This is the pytorch implementation of our ACL 2022 paper "Diversifyin

DM2 Lab @ ND 61 Dec 30, 2022
Azion the best solution of Edge Computing in the world.

Azion Edge Function docker action Create or update an Edge Functions on Azion Edge Nodes. The domain name is the key for decision to a create or updat

8 Jul 16, 2022
Computer Vision and Pattern Recognition, NUS CS4243, 2022

CS4243_2022 Computer Vision and Pattern Recognition, NUS CS4243, 2022 Cloud Machine #1 : Google Colab (Free GPU) Follow this Notebook installation : h

Xavier Bresson 142 Dec 15, 2022
Vit-ImageClassification - Pytorch ViT for Image classification on the CIFAR10 dataset

Vit-ImageClassification Introduction This project uses ViT to perform image clas

Kaicheng Yang 4 Jun 01, 2022
[CVPR'21] FedDG: Federated Domain Generalization on Medical Image Segmentation via Episodic Learning in Continuous Frequency Space

FedDG: Federated Domain Generalization on Medical Image Segmentation via Episodic Learning in Continuous Frequency Space by Quande Liu, Cheng Chen, Ji

Quande Liu 178 Jan 06, 2023