Public implementation of "Learning from Suboptimal Demonstration via Self-Supervised Reward Regression" from CoRL'21

Related tags

Deep LearningSSRR
Overview

Self-Supervised Reward Regression (SSRR)

Codebase for CoRL 2021 paper "Learning from Suboptimal Demonstration via Self-Supervised Reward Regression " Authors: Letian "Zac" Chen, Rohan Paleja, Matthew Gombolay

Usage

Quick overview

The pipeline of SSRR includes

  1. Initial IRL: Noisy-AIRL or AIRL.
  2. Noisy Dataset Generation: use initial policy learned in step 1 to generate trajectories with different noise levels and criticize trajectories with initial reward.
  3. Sigmoid Fitting: fit a sigmoid function for the noise-performance relationship using the data obtained in step 2.
  4. Reward Learning: learn a reward function by regressing to the sigmoid relationship obtained in step 3.
  5. Policy Learning: learn a policy by optimizing the reward learned in step 4.

I know this is a long README, but please make sure you read the entirety before trying out our code. Trust me, that will save your time!

Dependencies and Environment Preparations

Code is tested with Python 3.6 with Anaconda.

Required packages:

pip install scipy path.py joblib==0.12.3 flask h5py matplotlib scikit-learn pandas pillow pyprind tqdm nose2 mujoco-py cached_property cloudpickle git+https://github.com/Theano/[email protected]#egg=Theano git+https://github.com/neocxi/[email protected]#egg=Lasagne plotly==2.0.0 gym[all]==0.14.0 progressbar2 tensorflow-gpu==1.15 imgcat

Test sets of trajectories could be downloaded at Google Drive because Github could not hold files that are larger than 100MB! After downloading, please put full_demos/ under demos/.

If you are directly running python scripts, you will need to add the project root and the rllab_archive folder into your PYTHONPATH:

export PYTHONPATH=/path/to/this/repo/:/path/to/this/repo/rllab_archive/

If you are using the bash scripts provided (for example, noisy_airl_ssrr_drex_comparison_halfcheetah.sh), make sure to replace the first line to be

export PYTHONPATH=/path/to/this/repo/:/path/to/this/repo/rllab_archive/

Initial IRL

We provide code for AIRL and Noisy-AIRL implementation.

Running

Examples of running command would be

python script_experiment/halfcheetah_airl.py --output_dir=./data/halfcheetah_airl_test_1
python script_experiment/hopper_noisy_airl.py --output_dir=./data/hopper_noisy_airl_test_1 --noisy

Please note for Noisy-AIRL, you have to include the --noisy flag to make it actually sample trajectories with noise, otherwise it only changes the loss function according to Equation 6 in the paper.

Results

The result will be available in the output dir specified, and we recommend using rllab viskit to visualize it.

We also provide our run results available in data/{halfcheetah/hopper/ant}_{airl/noisy_airl}_test_1 if you want to skip this step!

Code Structure

The AIRL and Noisy-AIRL codes reside in inverse_rl/ with rllab dependencies in rllab_archive. The AIRL code is adjusted from the original AIRL codebase https://github.com/justinjfu/inverse_rl. The rllab archive was adjusted from the original rllab codebase https://github.com/rll/rllab.

Noisy Dataset Generation & Sigmoid Fitting

We implemented noisy dataset generation and sigmoid fitting together in code.

Running

Examples of running command would be

python script_experiment/noisy_dataset.py \
   --log_dir=./results/halfcheetah/temp/noisy_dataset/ \
   --env_id=HalfCheetah-v3 \
   --bc_agent=./results/halfcheetah/temp/bc/model.ckpt \
   --demo_trajs=./demos/suboptimal_demos/ant/dataset.pkl \
   --airl_path=./data/halfcheetah_airl_test_1/itr_999.pkl \
   --airl \
   --seed="${loop}"

Note that flag --airl determines whether we utilize the --airl_path or --bc_agent policy to generate the trajectory. Therefore, --bc_agent is optional when --airl present. For behavior cloning policy, please refer to https://github.com/dsbrown1331/CoRL2019-DREX.

The --airl_path always provide the initial reward to criticize the generated trajectories no matter whether --airl present.

Results

The result will be available in the log dir specified.

We also provide our run results available in results/{halfcheetah/hopper/ant}/{airl/noisy_airl}_data_ssrr_{1/2/3/4/5}/noisy_dataset/ if you want to skip this step!

Code Structure

Noisy dataset generation and Sigmoid fitting are implemented in script_experiment/noisy_dataset.py.

Reward Learning

We provide SSRR and D-REX implementation.

Running

Examples of running command would be

  python script_experiment/drex.py \
   --log_dir=./results/halfcheetah/temp/drex \
   --env_id=HalfCheetah-v3 \
   --bc_trajs=./demos/suboptimal_demos/halfcheetah/dataset.pkl \
   --unseen_trajs=./demos/full_demos/halfcheetah/unseen_trajs.pkl \
   --noise_injected_trajs=./results/halfcheetah/temp/noisy_dataset/prebuilt.pkl \
   --seed="${loop}"
  python script_experiment/ssrr.py \
   --log_dir=./results/halfcheetah/temp/ssrr \
   --env_id=HalfCheetah-v3 \
   --mode=train_reward \
   --noise_injected_trajs=./results/halfcheetah/temp/noisy_dataset/prebuilt.pkl \
   --bc_trajs=demos/suboptimal_demos/halfcheetah/dataset.pkl \
   --unseen_trajs=demos/full_demos/halfcheetah/unseen_trajs.pkl \
   --min_steps=50 --max_steps=500 --l2_reg=0.1 \
   --sigmoid_params_path=./results/halfcheetah/temp/noisy_dataset/fitted_sigmoid_param.pkl \
   --seed="${loop}"

The bash script also helps combining running of noisy dataset generation, sigmoid fitting, and reward learning, and repeats several times:

./airl_ssrr_drex_comparison_halfcheetah.sh

Results

The result will be available in the log dir specified.

The correlation between the predicted reward and the ground-truth reward tested on the unseen_trajs is reported at the end of running on console, or, if you are using the bash script, at the end of the d_rex.log or ssrr.log.

We also provide our run results available in results/{halfcheetah/hopper/ant}/{airl/noisy_airl}_data_ssrr_{1/2/3/4/5}/{drex/ssrr}/.

Code Structure

SSRR is implemented in script_experiment/ssrr.py, Agents/SSRRAgent.py, Datasets/NoiseDataset.py.

D-REX is implemented in script_experiment/drex.py, scrip_experiment/drex_utils.py, and script_experiment/tf_commons/ops.

Both implementations are adapted from https://github.com/dsbrown1331/CoRL2019-DREX.

Policy Learning

We utilize stable-baselines to optimize policy over the reward we learned.

Running

Before running, you should edit script_experiment/rl_utils/sac.yml to change the learned reward model directory, for example:

  env_wrapper: {"script_experiment.rl_utils.wrappers.CustomNormalizedReward": {"model_dir": "/home/zac/Programming/Zac-SSRR/results/halfcheetah/noisy_airl_data_ssrr_4/ssrr/", "ctrl_coeff": 0.1, "alive_bonus": 0.0}}

Examples of running command would be

python script_experiment/train_rl_with_learned_reward.py \
 --algo=sac \
 --env=HalfCheetah-v3 \
 --tensorboard-log=./results/HalfCheetah_custom_reward/ \
 --log-folder=./results/HalfCheetah_custom_reward/ \
 --save-freq=10000

Please note the flag --env-kwargs=terminate_when_unhealthy:False is necessary for Hopper and Ant as discussed in our paper Supplementary D.1.

Examples of running evaluation the learned policy's ground-truth reward would be

python script_experiment/test_rl_with_ground_truth_reward.py \
 --algo=sac \
 --env=HalfCheetah-v3 \
 -f=./results/HalfCheetah_custom_reward/ \
 --exp-id=1 \
 -e=5 \
 --no-render \
 --env-kwargs=terminate_when_unhealthy:False

Results

The result will be available in the log folder specified.

We also provide our run results in results/.

Code Structure

The code script_experiment/train_rl_with_learned_reward.py and utils/ call stable-baselines library to learn a policy with the learned reward function. Note that utils could not be renamed because of the rl-baselines-zoo constraint.

The codes are adjusted from https://github.com/araffin/rl-baselines-zoo.

Random Seeds

Because of the inherent stochasticity of GPU reduction operations such as mean and sum (https://github.com/tensorflow/tensorflow/issues/3103), even if we set the random seed, we cannot reproduce the exact result every time. Therefore, we encourage you to run multiple times to reduce the random effect.

If you have a nice way to get the same result each time, please let us know!

Ending Thoughts

We welcome discussions or extensions of our paper and code in Issues!

Feel free to leave a star if you like this repo!

For more exciting work our lab (CORE Robotics Lab in Georgia Institute of Technology led by Professor Matthew Gombolay), check out our website!

Lightweight Salient Object Detection in Optical Remote Sensing Images via Feature Correlation

CorrNet This project provides the code and results for 'Lightweight Salient Object Detection in Optical Remote Sensing Images via Feature Correlation'

Gongyang Li 13 Nov 03, 2022
System-oriented IR evaluations are limited to rather abstract understandings of real user behavior

Validating Simulations of User Query Variants This repository contains the scripts of the experiments and evaluations, simulated queries, as well as t

IR Group at Technische Hochschule Köln 2 Nov 23, 2022
Plaything for Autistic Children (demo for PaddlePaddle/Wechaty/Mixlab project)

星星的孩子 - 一款为孤独症孩子设计的聊天机器人游戏 孤独症儿童是目前常常被忽视的一类群体。他们有着类似性格内向的特征,实际却受着广泛性发育障碍的折磨。 项目背景 这类儿童在与人交往时存在着沟通障碍,其特点表现在: 社交交流差,互动障碍明显 认知能力有限,被动认知 兴趣狭窄,重复刻板,缺乏变化和想象

Tianyi Pan 35 Nov 24, 2022
DLWP: Deep Learning Weather Prediction

DLWP: Deep Learning Weather Prediction DLWP is a Python project containing data-

Kushal Shingote 3 Aug 14, 2022
Another pytorch implementation of FCN (Fully Convolutional Networks)

FCN-pytorch-easiest Trying to be the easiest FCN pytorch implementation and just in a get and use fashion Here I use a handbag semantic segmentation f

Y. Dong 158 Dec 21, 2022
ECLARE: Extreme Classification with Label Graph Correlations

ECLARE ECLARE: Extreme Classification with Label Graph Correlations @InProceedings{Mittal21b, author = "Mittal, A. and Sachdeva, N. and Agrawal

Extreme Classification 35 Nov 06, 2022
This is 2nd term discrete maths project done by UCU students that uses backtracking to solve various problems.

Backtracking Project Sponsors This is a project made by UCU students: Olha Liuba - crossword solver implementation Hanna Yershova - sudoku solver impl

Dasha 4 Oct 17, 2021
A PaddlePaddle implementation of Time Interval Aware Self-Attentive Sequential Recommendation.

TiSASRec.paddle A PaddlePaddle implementation of Time Interval Aware Self-Attentive Sequential Recommendation. Introduction 论文:Time Interval Aware Sel

Paddorch 2 Nov 28, 2021
Cooperative multi-agent reinforcement learning for high-dimensional nonequilibrium control

Cooperative multi-agent reinforcement learning for high-dimensional nonequilibrium control Official implementation of: Cooperative multi-agent reinfor

0 Nov 16, 2021
Code for ICE-BeeM paper - NeurIPS 2020

ICE-BeeM: Identifiable Conditional Energy-Based Deep Models Based on Nonlinear ICA This repository contains code to run and reproduce the experiments

Ilyes Khemakhem 65 Dec 22, 2022
Introducing neural networks to predict stock prices

IntroNeuralNetworks in Python: A Template Project IntroNeuralNetworks is a project that introduces neural networks and illustrates an example of how o

Vivek Palaniappan 637 Jan 04, 2023
Final Project for the CS238: Decision Making Under Uncertainty course at Stanford University in Autumn '21.

Final Project for the CS238: Decision Making Under Uncertainty course at Stanford University in Autumn '21. We optimized wind turbine placement in a wind farm, subject to wake effects, using Q-learni

Manasi Sharma 2 Sep 27, 2022
PyTorch implementation of NeurIPS 2021 paper: "CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration"

CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration (NeurIPS 2021) PyTorch implementation of the paper: CoFiNet: Reli

76 Jan 03, 2023
Implementation of Pooling by Sliced-Wasserstein Embedding (NeurIPS 2021)

PSWE: Pooling by Sliced-Wasserstein Embedding (NeurIPS 2021) PSWE is a permutation-invariant feature aggregation/pooling method based on sliced-Wasser

Navid Naderializadeh 3 May 06, 2022
Pytorch implementation of NeurIPS 2021 paper: Geometry Processing with Neural Fields.

Geometry Processing with Neural Fields Pytorch implementation for the NeurIPS 2021 paper: Geometry Processing with Neural Fields Guandao Yang, Serge B

Guandao Yang 162 Dec 16, 2022
BlueFog Tutorials

BlueFog Tutorials Welcome to the BlueFog tutorials! In this repository, we've put together a collection of awesome Jupyter notebooks. These notebooks

4 Oct 27, 2021
Pytorch implementation of PTNet for high-resolution and longitudinal infant MRI synthesis

Pyramid Transformer Net (PTNet) Project | Paper Pytorch implementation of PTNet for high-resolution and longitudinal infant MRI synthesis. PTNet: A Hi

Xuzhe Johnny Zhang 6 Jun 08, 2022
pytorch implementation of openpose including Hand and Body Pose Estimation.

pytorch-openpose pytorch implementation of openpose including Body and Hand Pose Estimation, and the pytorch model is directly converted from openpose

Hzzone 1.4k Jan 07, 2023
Video Instance Segmentation using Inter-Frame Communication Transformers (NeurIPS 2021)

Video Instance Segmentation using Inter-Frame Communication Transformers (NeurIPS 2021) Paper Video Instance Segmentation using Inter-Frame Communicat

Sukjun Hwang 81 Dec 29, 2022
realsense d400 -> jpg + csv

Realsense-capture realsense d400 - jpg + csv Requirements RealSense sdk : Installation Python3 pyrealsense2 (RealSense SDK) Numpy OpenCV Tkinter Run

Ar-Ray 2 Mar 22, 2022