Training Very Deep Neural Networks Without Skip-Connections

Overview

DiracNets

v2 update (January 2018):

The code was updated for DiracNets-v2 in which we removed NCReLU by adding per-channel a and b multipliers without weight decay. This allowed us to significantly simplify the network, which is now folds into a simple chain of convolution-ReLU layers, like VGG. On ImageNet DiracNet-18 and DiracNet-34 closely match corresponding ResNet with the same number of parameters.

See v1 branch for DiracNet-v1.


PyTorch code and models for DiracNets: Training Very Deep Neural Networks Without Skip-Connections

https://arxiv.org/abs/1706.00388

Networks with skip-connections like ResNet show excellent performance in image recognition benchmarks, but do not benefit from increased depth, we are thus still interested in learning actually deep representations, and the benefits they could bring. We propose a simple weight parameterization, which improves training of deep plain (without skip-connections) networks, and allows training plain networks with hundreds of layers. Accuracy of our proposed DiracNets is close to Wide ResNet (although DiracNets need more parameters to achieve it), and we are able to match ResNet-1000 accuracy with plain DiracNet with only 28 layers. Also, the proposed Dirac weight parameterization can be folded into one filter for inference, leading to easily interpretable VGG-like network.

DiracNets on ImageNet:

TL;DR

In a nutshell, Dirac parameterization is a sum of filters and scaled Dirac delta function:

conv2d(x, alpha * delta + W)

Here is simplified PyTorch-like pseudocode for the function we use to train plain DiracNets (with weight normalization):

def dirac_conv2d(input, W, alpha, beta)
    return F.conv2d(input, alpha * dirac(W) + beta * normalize(W))

where alpha and beta are per-channel scaling multipliers, and normalize does l_2 normalization over each feature plane.

Code

Code structure:

├── README.md # this file
├── diracconv.py # modular DiracConv definitions
├── test.py # unit tests
├── diracnet-export.ipynb # ImageNet pretrained models
├── diracnet.py # functional model definitions
└── train.py # CIFAR and ImageNet training code

Requirements

First install PyTorch, then install torchnet:

pip install git+https://github.com/pytorch/[email protected]

Install other Python packages:

pip install -r requirements.txt

To train DiracNet-34-2 on CIFAR do:

python train.py --save ./logs/diracnets_$RANDOM$RANDOM --depth 34 --width 2

To train DiracNet-18 on ImageNet do:

python train.py --dataroot ~/ILSVRC2012/ --dataset ImageNet --depth 18 --save ./logs/diracnet_$RANDOM$RANDOM \
                --batchSize 256 --epoch_step [30,60,90] --epochs 100 --weightDecay 0.0001 --lr_decay_ratio 0.1

nn.Module code

We provide DiracConv1d, DiracConv2d, DiracConv3d, which work like nn.Conv1d, nn.Conv2d, nn.Conv3d, but have Dirac-parametrization inside (our training code doesn't use these modules though).

Pretrained models

We fold batch normalization and Dirac parameterization into F.conv2d weight and bias tensors for simplicity. Resulting models are as simple as VGG or AlexNet, having only nonlinearity+conv2d as a basic block.

See diracnets.ipynb for functional and modular model definitions.

There is also folded DiracNet definition in diracnet.py, which uses code from PyTorch model_zoo and downloads pretrained model from Amazon S3:

from diracnet import diracnet18
model = diracnet18(pretrained=True)

Printout of the model above:

DiracNet(
  (features): Sequential(
    (conv): Conv2d (3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3))
    (max_pool0): MaxPool2d(kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), dilation=(1, 1), ceil_mode=False)
    (group0.block0.relu): ReLU()
    (group0.block0.conv): Conv2d (64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (group0.block1.relu): ReLU()
    (group0.block1.conv): Conv2d (64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (group0.block2.relu): ReLU()
    (group0.block2.conv): Conv2d (64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (group0.block3.relu): ReLU()
    (group0.block3.conv): Conv2d (64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (max_pool1): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), dilation=(1, 1), ceil_mode=False)
    (group1.block0.relu): ReLU()
    (group1.block0.conv): Conv2d (64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (group1.block1.relu): ReLU()
    (group1.block1.conv): Conv2d (128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (group1.block2.relu): ReLU()
    (group1.block2.conv): Conv2d (128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (group1.block3.relu): ReLU()
    (group1.block3.conv): Conv2d (128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (max_pool2): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), dilation=(1, 1), ceil_mode=False)
    (group2.block0.relu): ReLU()
    (group2.block0.conv): Conv2d (128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (group2.block1.relu): ReLU()
    (group2.block1.conv): Conv2d (256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (group2.block2.relu): ReLU()
    (group2.block2.conv): Conv2d (256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (group2.block3.relu): ReLU()
    (group2.block3.conv): Conv2d (256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (max_pool3): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), dilation=(1, 1), ceil_mode=False)
    (group3.block0.relu): ReLU()
    (group3.block0.conv): Conv2d (256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (group3.block1.relu): ReLU()
    (group3.block1.conv): Conv2d (512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (group3.block2.relu): ReLU()
    (group3.block2.conv): Conv2d (512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (group3.block3.relu): ReLU()
    (group3.block3.conv): Conv2d (512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (last_relu): ReLU()
    (avg_pool): AvgPool2d(kernel_size=7, stride=7, padding=0, ceil_mode=False, count_include_pad=True)
  )
  (fc): Linear(in_features=512, out_features=1000)
)

The models were trained with OpenCV, so you need to use it too to reproduce stated accuracy.

Pretrained weights for DiracNet-18 and DiracNet-34:
https://s3.amazonaws.com/modelzoo-networks/diracnet18v2folded-a2174e15.pth
https://s3.amazonaws.com/modelzoo-networks/diracnet34v2folded-dfb15d34.pth

Pretrained weights for the original (not folded) model, functional definition only:
https://s3.amazonaws.com/modelzoo-networks/diracnet18-v2_checkpoint.pth
https://s3.amazonaws.com/modelzoo-networks/diracnet34-v2_checkpoint.pth

We plan to add more pretrained models later.

Bibtex

@inproceedings{Zagoruyko2017diracnets,
    author = {Sergey Zagoruyko and Nikos Komodakis},
    title = {DiracNets: Training Very Deep Neural Networks Without Skip-Connections},
    url = {https://arxiv.org/abs/1706.00388},
    year = {2017}}
Bianace Prediction Pytorch Model

Bianace Prediction Pytorch Model Main Results ETHUSDT from 2021-01-01 00:00:00 t

RoyYang 4 Jul 20, 2022
TensorFlowOnSpark brings TensorFlow programs to Apache Spark clusters.

TensorFlowOnSpark TensorFlowOnSpark brings scalable deep learning to Apache Hadoop and Apache Spark clusters. By combining salient features from the T

Yahoo 3.8k Jan 04, 2023
A demo of how to use JAX to create a simple gravity simulation

JAX Gravity This repo contains a demo of how to use JAX to create a simple gravity simulation. It uses JAX's experimental ode package to solve the dif

Cristian Garcia 16 Sep 22, 2022
Network Compression via Central Filter

Network Compression via Central Filter Environments The code has been tested in the following environments: Python 3.8 PyTorch 1.8.1 cuda 10.2 torchsu

2 May 12, 2022
Dataset para entrenamiento de yoloV3 para 4 clases

Deteccion de objetos en video Este repo basado en el proyecto PyTorch YOLOv3 para correr detección de objetos sobre video. Construí sobre este proyect

1 Nov 01, 2021
Code for the ICML 2021 paper "Bridging Multi-Task Learning and Meta-Learning: Towards Efficient Training and Effective Adaptation", Haoxiang Wang, Han Zhao, Bo Li.

Bridging Multi-Task Learning and Meta-Learning Code for the ICML 2021 paper "Bridging Multi-Task Learning and Meta-Learning: Towards Efficient Trainin

AI Secure 57 Dec 15, 2022
Implementation of "Fast and Flexible Temporal Point Processes with Triangular Maps" (Oral @ NeurIPS 2020)

Fast and Flexible Temporal Point Processes with Triangular Maps This repository includes a reference implementation of the algorithms described in "Fa

Oleksandr Shchur 20 Dec 02, 2022
I-SECRET: Importance-guided fundus image enhancement via semi-supervised contrastive constraining

I-SECRET This is the implementation of the MICCAI 2021 Paper "I-SECRET: Importance-guided fundus image enhancement via semi-supervised contrastive con

13 Dec 02, 2022
The codebase for Data-driven general-purpose voice activity detection.

Data driven GPVAD Repository for the work in TASLP 2021 Voice activity detection in the wild: A data-driven approach using teacher-student training. S

Heinrich Dinkel 75 Nov 27, 2022
Generalizing Gaze Estimation with Outlier-guided Collaborative Adaptation

Generalizing Gaze Estimation with Outlier-guided Collaborative Adaptation Our paper is accepted by ICCV2021. Picture: Overview of the proposed Plug-an

Yunfei Liu 32 Dec 10, 2022
Pytorch Implementation of Interaction Networks for Learning about Objects, Relations and Physics

Interaction-Network-Pytorch Pytorch Implementraion of Interaction Networks for Learning about Objects, Relations and Physics. Interaction Network is a

117 Nov 05, 2022
Satellite labelling tool for manual labelling of storm top features such as overshooting tops, above-anvil plumes, cold U/Vs, rings etc.

Satellite labelling tool About this app A tool for manual labelling of storm top features such as overshooting tops, above-anvil plumes, cold U/Vs, ri

Czech Hydrometeorological Institute - Satellite Department 10 Sep 14, 2022
Physics-Informed Neural Networks (PINN) and Deep BSDE Solvers of Differential Equations for Scientific Machine Learning (SciML) accelerated simulation

NeuralPDE NeuralPDE.jl is a solver package which consists of neural network solvers for partial differential equations using scientific machine learni

SciML Open Source Scientific Machine Learning 680 Jan 02, 2023
AlphaNet Improved Training of Supernet with Alpha-Divergence

AlphaNet: Improved Training of Supernet with Alpha-Divergence This repository contains our PyTorch training code, evaluation code and pretrained model

Facebook Research 87 Oct 10, 2022
Anti-Adversarially Manipulated Attributions for Weakly and Semi-Supervised Semantic Segmentation (CVPR 2021)

Anti-Adversarially Manipulated Attributions for Weakly and Semi-Supervised Semantic Segmentation Input Image Initial CAM Successive Maps with adversar

Jungbeom Lee 110 Dec 07, 2022
This package implements the algorithms introduced in Smucler, Sapienza, and Rotnitzky (2020) to compute optimal adjustment sets in causal graphical models.

optimaladj: A library for computing optimal adjustment sets in causal graphical models This package implements the algorithms introduced in Smucler, S

Facundo Sapienza 6 Aug 04, 2022
A symbolic-model-guided fuzzer for TLS

tlspuffin TLS Protocol Under FuzzINg A symbolic-model-guided fuzzer for TLS Master Thesis | Thesis Presentation | Documentation Disclaimer: The term "

69 Dec 20, 2022
Imposter-detector-2022 - HackED 2022 Team 3IQ - 2022 Imposter Detector

HackED 2022 Team 3IQ - 2022 Imposter Detector By Aneeljyot Alagh, Curtis Kan, Jo

Joshua Ji 3 Aug 20, 2022
Sequential GCN for Active Learning

Sequential GCN for Active Learning Please cite if using the code: Link to paper. Requirements: python 3.6+ torch 1.0+ pip libraries: tqdm, sklearn, sc

45 Dec 26, 2022
DSL for matching Python ASTs

py-ast-rule-engine This library provides a DSL (domain-specific language) to match a pattern inside a Python AST (abstract syntax tree). The library i

1 Dec 18, 2021