Politecnico of Turin Thesis: "Implementation and Evaluation of an Educational Chatbot based on NLP Techniques"

Overview

THESIS_CAIRONE_FIORENTINO

Politecnico of Turin Thesis: "Implementation and Evaluation of an Educational Chatbot based on NLP Techniques"

GENERATE TOKEN SLACK

NB: REMEMBER TO REGENERATE SLACK TOKENS AND CHANNEL ID IF ARE DISABLE (SEE THESIS PDF)

  • Go on your Slack App ( App Slack )-> select your app or create new -> Settings -> Install App -> (regenerate two tokens) -> Copy Tokens in actions/Constants.py and credentials.yml files.

RASA - LOCAL MODE

Components Installation

  • Writing in Anaconda console this command:
    • conda create --name venv python==3.8.0
    • conda activate venv
    • conda install ujson tensorflow
    • pip install rasa
    • pip install rasa[spacy] for SPACY configuration
    • pip install rasa[trasformers] for BERT configuration
    • rasa init if you want to create new project

MORE INFO: See this video: link

Code Execution

  • First, in TESI_POLI_POBOT directory do the training in anaconda console with venv activate:

    • rasa train --config configs/{file_cofiguration}.yml --fixed-model-name {model_name}
  • After run server rasa:

  • rasa run --connector slack --model {model_name} --debug

  • In an other prompr run server rasa ACTIONS:

  • rasa run actions --action actions --debug

  • If you want,to test locally the intent classification, run in Anaconda console:

    • rasa train --config configs/{file_cofiguration}.yml --fixed-model-name {model_name}
    • rasa shell --model {model_name}

Rasa Bot - Slack Connection

  • after training and running the server in Anaconda console (see ## Execution of code paragraph):
    • in BOT_RASA/ngrok directory run this command (in console prompt):
      • ngrok http 5005 to create a tunnel for localhost:5005 address:
      • select the forwarding address choose to ngrok ({address} = http://<number_code>.ngrok.io)
      • in Slack App link save the address (selecting in Features menu):
        • Interactivity & Shortcut > Request URL: ({address}/webhooks/slack/webhook) > Save Changes
        • OAuth & Permissions > Redirect URLs > Add : ({address}/webhooks/slack/webhook) > Save URLs
        • Event Subscriptions > Enable Events (Request URL) > Change: ({address}/webhooks/slack/webhook) > Save Changes
      • expired time of ngrok address: 2 hours. (when we will use a public address, ngrok will become USELESS)
  • tokens bot save as environment variable in PC server (for security issue)
  • Slack bot: link

To Connect also the ACTION Server Rasa:

  • ngrok http 5055 to create a tunnel for localhost:5055
  • In endpoints.yml modify url of action_endpoint: {address}/webhook

RASA X

Components Installation

  • Writing in Anaconda console this command:
    • conda create --name venv python==3.9.0
    • conda activate venv
    • conda install ujson tensorflow
    • pip install rasa[spacy] for SPACY configuration
    • pip install rasa[trasformers] for BERT configuration
    • pip install --upgrade pip==20.0.1 pip3 install rasa-x --extra-index-url https://pypi.rasa.com/simple pip install --upgrade pip

Code Execution

  • First, in TESI_POLI_POBOT directory do the training in anaconda console with venv activate:

    • set PYTHONUTF8=1
    • rasa x --connector slack --config configs/{file_cofiguration}.yml
  • In an other prompt run server rasa ACTIONS:

  • rasa run actions --action actions --debug

Rasa Bot - Slack Connection

  • after training and running the server in Anaconda console (see ## Execution of code paragraph):
    • in BOT_RASA/ngrok directory run this command (in console prompt):
      • ngrok http 5005 to create a tunnel for localhost:5005 address:
      • select the forwarding address choose to ngrok ({address} = http://<number_code>.ngrok.io)
      • in Slack App link save the address (selecting in Features menu):
        • Interactivity & Shortcut > Request URL: ({address}/webhooks/slack/webhook) > Save Changes
        • OAuth & Permissions > Redirect URLs > Add : ({address}/webhooks/slack/webhook) > Save URLs
        • Event Subscriptions > Enable Events (Request URL) > Change: ({address}/webhooks/slack/webhook) > Save Changes
      • expired time of ngrok address: 2 hours. (when we will use a public address, ngrok will become USELESS)
  • tokens bot save as environment variable in PC server (for security issue)
  • Slack bot: link

To Connect also the ACTION Server Rasa:

  • ngrok http 5055 to create a tunnel for localhost:5055
  • In endpoints.yml modify url of action_endpoint: {address}/webhook

To Connect also the ACTION Server Rasa X:

  • ngrok http 5055 to create a tunnel for localhost:5002
  • In credentials.yml modify url of rasa: {address}/api

RASA - DOCKER MODE

Code Execution

If is the first time, run this commands:

docker volume create db-volume
docker-compose up -d
docker-compose down
docker-compose up -d
python rasa_x_commands.py create --update admin me <password_rasa_server> (i.e. password)
docker-compose down
docker-compose up -d

Otherwise, in TESI_POLI_POBOT directory in console run only this command:

  • docker-compose up -d

Rasa Bot - Slack Connection

After all container is in running mode, in web browser go in `http:://localhost:80' and insert the password choose the first time. (i.e. password)

If rasa x server not contain NLU data (possible first time) you can upload the file directly using interface of rasa x server in Training -> NLU data / Stories / Rules / Configuration (copy and paste the content of config choose in TESI_POLI_POBOT directory)

If you want to connect to slack:

  • after training and running the server in Anaconda console (see ## Execution of code paragraph):
    • in BOT_RASA/ngrok directory run this command (in console prompt):
      • ngrok http 80 to create a tunnel for localhost:80 address:
      • select the forwarding address choose to ngrok ({address} = http://<number_code>.ngrok.io)
      • in Slack App link save the address (selecting in Features menu):
        • Interactivity & Shortcut > Request URL: ({address}/core/webhooks/slack/webhook) > Save Changes
        • OAuth & Permissions > Redirect URLs > Add : ({address}/core/webhooks/slack/webhook) > Save URLs
        • Event Subscriptions > Enable Events (Request URL) > Change: ({address}/core/webhooks/slack/webhook) > Save Changes
      • expired time of ngrok address: 2 hours. (when we will use a public address, ngrok will become USELESS)
  • tokens bot save as environment variable in PC server (for security issue)
  • Slack bot: link

RASA - TEST DATA

Test stories in tests directory

  • if you want tests stories with cross-validation:
    • rasa train --config configs/{file_cofiguration}.yml --fixed-model-name {model_name} (if model does not exist)
    • rasa test --config configs/{file_cofiguration}.yml --cross-validation --runs {time_runs} --folds {num_folds} --out {dir_out} --model {model_name}

Test NLU data

  • if you want test only the NLU data splitted:

    • rasa train nlu --nlu train_test_split/training_data.yml --config configs/{file_cofiguration}.yml --fixed-model-name ./models_NLU/{model_name} (if model does not exist)
    • rasa test nlu --nlu train_test_split/test_data.yml --out {dir_out} --model ./models_NLU/{model_name}
  • if you want test only the NLU data totally:

    • rasa train nlu --config configs/{file_cofiguration}.yml --fixed-model-name {model_name} (if model does not exist)
    • rasa test nlu --nlu train_test_split/test_data.yml --out {dir_out} --model {model_name}

Test CORE data

  • if you want test only the CORE data:
    • rasa train --config configs/{file_cofiguration}.yml --fixed-model-name {model_name} (if model does not exist)
    • rasa test core --stories tests/test_stories.yml --out {dir_out} --model {model_name}
Owner
cairone_fiorentino97
cairone_fiorentino97
Implementation of ReSeg using PyTorch

Implementation of ReSeg using PyTorch ReSeg: A Recurrent Neural Network-based Model for Semantic Segmentation Pascal-Part Annotations Pascal VOC 2010

Onur Kaplan 46 Nov 23, 2022
Detectorch - detectron for PyTorch

Detectorch - detectron for PyTorch (Disclaimer: this is work in progress and does not feature all the functionalities of detectron. Currently only inf

Ignacio Rocco 558 Dec 23, 2022
Isaac Gym Reinforcement Learning Environments

Isaac Gym Reinforcement Learning Environments

NVIDIA Omniverse 714 Jan 08, 2023
When in Doubt: Improving Classification Performance with Alternating Normalization

When in Doubt: Improving Classification Performance with Alternating Normalization Findings of EMNLP 2021 Menglin Jia, Austin Reiter, Ser-Nam Lim, Yoa

Menglin Jia 13 Nov 06, 2022
fklearn: Functional Machine Learning

fklearn: Functional Machine Learning fklearn uses functional programming principles to make it easier to solve real problems with Machine Learning. Th

nubank 1.4k Dec 07, 2022
YuNetのPythonでのONNX、TensorFlow-Lite推論サンプル

YuNet-ONNX-TFLite-Sample YuNetのPythonでのONNX、TensorFlow-Lite推論サンプルです。 TensorFlow-LiteモデルはPINTO0309/PINTO_model_zoo/144_YuNetのものを使用しています。 Requirement Op

KazuhitoTakahashi 8 Nov 17, 2021
NeuralTalk is a Python+numpy project for learning Multimodal Recurrent Neural Networks that describe images with sentences.

#NeuralTalk Warning: Deprecated. Hi there, this code is now quite old and inefficient, and now deprecated. I am leaving it on Github for educational p

Andrej 5.3k Jan 07, 2023
Image inpainting using Gaussian Mixture Models

dmfa_inpainting Source code for: MisConv: Convolutional Neural Networks for Missing Data (to be published at WACV 2022) Estimating conditional density

Marcin Przewięźlikowski 8 Oct 09, 2022
Codes for the paper Contrast and Mix: Temporal Contrastive Video Domain Adaptation with Background Mixing

Contrast and Mix (CoMix) The repository contains the codes for the paper Contrast and Mix: Temporal Contrastive Video Domain Adaptation with Backgroun

Computer Vision and Intelligence Research (CVIR) 13 Dec 10, 2022
Repository for the semantic WMI loss

Installation: pip install -e . Installing DL2: First clone DL2 in a separate directory and install it using the following commands: git clone https:/

Nick Hoernle 4 Sep 15, 2022
METER: Multimodal End-to-end TransformER

METER Code and pre-trained models will be publicized soon. Citation @article{dou2021meter, title={An Empirical Study of Training End-to-End Vision-a

Zi-Yi Dou 257 Jan 06, 2023
ICON: Implicit Clothed humans Obtained from Normals (CVPR 2022)

ICON: Implicit Clothed humans Obtained from Normals Yuliang Xiu · Jinlong Yang · Dimitrios Tzionas · Michael J. Black CVPR 2022 News 🚩 [2022/04/26] H

Yuliang Xiu 1.1k Jan 04, 2023
Code for Phase diagram of Stochastic Gradient Descent in high-dimensional two-layer neural networks

Phase diagram of Stochastic Gradient Descent in high-dimensional two-layer neural networks Under construction. Description Code for Phase diagram of S

Rodrigo Veiga 3 Nov 24, 2022
(CVPR2021) Kaleido-BERT: Vision-Language Pre-training on Fashion Domain

Kaleido-BERT: Vision-Language Pre-training on Fashion Domain Mingchen Zhuge*, Dehong Gao*, Deng-Ping Fan#, Linbo Jin, Ben Chen, Haoming Zhou, Minghui

248 Dec 04, 2022
This solves the autonomous driving issue which is supported by deep learning technology. Given a video, it splits into images and predicts the angle of turning for each frame.

Self Driving Car An autonomous car (also known as a driverless car, self-driving car, and robotic car) is a vehicle that is capable of sensing its env

Sagor Saha 4 Sep 04, 2021
Self-Supervised Pre-Training for Transformer-Based Person Re-Identification

Self-Supervised Pre-Training for Transformer-Based Person Re-Identification [pdf] The official repository for Self-Supervised Pre-Training for Transfo

Hao Luo 116 Jan 04, 2023
Deep High-Resolution Representation Learning for Human Pose Estimation

Deep High-Resolution Representation Learning for Human Pose Estimation (accepted to CVPR2019) News If you are interested in internship or research pos

HRNet 167 Dec 27, 2022
Everything you need to know about NumPy( Creating Arrays, Indexing, Math,Statistics,Reshaping).

Everything you need to know about NumPy( Creating Arrays, Indexing, Math,Statistics,Reshaping).

1 Feb 14, 2022
🏃‍♀️ A curated list about human motion capture, analysis and synthesis.

Awesome Human Motion 🏃‍♀️ A curated list about human motion capture, analysis and synthesis. Contents Introduction Human Models Datasets Data Process

Dennis Wittchen 274 Dec 14, 2022