Politecnico of Turin Thesis: "Implementation and Evaluation of an Educational Chatbot based on NLP Techniques"

Overview

THESIS_CAIRONE_FIORENTINO

Politecnico of Turin Thesis: "Implementation and Evaluation of an Educational Chatbot based on NLP Techniques"

GENERATE TOKEN SLACK

NB: REMEMBER TO REGENERATE SLACK TOKENS AND CHANNEL ID IF ARE DISABLE (SEE THESIS PDF)

  • Go on your Slack App ( App Slack )-> select your app or create new -> Settings -> Install App -> (regenerate two tokens) -> Copy Tokens in actions/Constants.py and credentials.yml files.

RASA - LOCAL MODE

Components Installation

  • Writing in Anaconda console this command:
    • conda create --name venv python==3.8.0
    • conda activate venv
    • conda install ujson tensorflow
    • pip install rasa
    • pip install rasa[spacy] for SPACY configuration
    • pip install rasa[trasformers] for BERT configuration
    • rasa init if you want to create new project

MORE INFO: See this video: link

Code Execution

  • First, in TESI_POLI_POBOT directory do the training in anaconda console with venv activate:

    • rasa train --config configs/{file_cofiguration}.yml --fixed-model-name {model_name}
  • After run server rasa:

  • rasa run --connector slack --model {model_name} --debug

  • In an other prompr run server rasa ACTIONS:

  • rasa run actions --action actions --debug

  • If you want,to test locally the intent classification, run in Anaconda console:

    • rasa train --config configs/{file_cofiguration}.yml --fixed-model-name {model_name}
    • rasa shell --model {model_name}

Rasa Bot - Slack Connection

  • after training and running the server in Anaconda console (see ## Execution of code paragraph):
    • in BOT_RASA/ngrok directory run this command (in console prompt):
      • ngrok http 5005 to create a tunnel for localhost:5005 address:
      • select the forwarding address choose to ngrok ({address} = http://<number_code>.ngrok.io)
      • in Slack App link save the address (selecting in Features menu):
        • Interactivity & Shortcut > Request URL: ({address}/webhooks/slack/webhook) > Save Changes
        • OAuth & Permissions > Redirect URLs > Add : ({address}/webhooks/slack/webhook) > Save URLs
        • Event Subscriptions > Enable Events (Request URL) > Change: ({address}/webhooks/slack/webhook) > Save Changes
      • expired time of ngrok address: 2 hours. (when we will use a public address, ngrok will become USELESS)
  • tokens bot save as environment variable in PC server (for security issue)
  • Slack bot: link

To Connect also the ACTION Server Rasa:

  • ngrok http 5055 to create a tunnel for localhost:5055
  • In endpoints.yml modify url of action_endpoint: {address}/webhook

RASA X

Components Installation

  • Writing in Anaconda console this command:
    • conda create --name venv python==3.9.0
    • conda activate venv
    • conda install ujson tensorflow
    • pip install rasa[spacy] for SPACY configuration
    • pip install rasa[trasformers] for BERT configuration
    • pip install --upgrade pip==20.0.1 pip3 install rasa-x --extra-index-url https://pypi.rasa.com/simple pip install --upgrade pip

Code Execution

  • First, in TESI_POLI_POBOT directory do the training in anaconda console with venv activate:

    • set PYTHONUTF8=1
    • rasa x --connector slack --config configs/{file_cofiguration}.yml
  • In an other prompt run server rasa ACTIONS:

  • rasa run actions --action actions --debug

Rasa Bot - Slack Connection

  • after training and running the server in Anaconda console (see ## Execution of code paragraph):
    • in BOT_RASA/ngrok directory run this command (in console prompt):
      • ngrok http 5005 to create a tunnel for localhost:5005 address:
      • select the forwarding address choose to ngrok ({address} = http://<number_code>.ngrok.io)
      • in Slack App link save the address (selecting in Features menu):
        • Interactivity & Shortcut > Request URL: ({address}/webhooks/slack/webhook) > Save Changes
        • OAuth & Permissions > Redirect URLs > Add : ({address}/webhooks/slack/webhook) > Save URLs
        • Event Subscriptions > Enable Events (Request URL) > Change: ({address}/webhooks/slack/webhook) > Save Changes
      • expired time of ngrok address: 2 hours. (when we will use a public address, ngrok will become USELESS)
  • tokens bot save as environment variable in PC server (for security issue)
  • Slack bot: link

To Connect also the ACTION Server Rasa:

  • ngrok http 5055 to create a tunnel for localhost:5055
  • In endpoints.yml modify url of action_endpoint: {address}/webhook

To Connect also the ACTION Server Rasa X:

  • ngrok http 5055 to create a tunnel for localhost:5002
  • In credentials.yml modify url of rasa: {address}/api

RASA - DOCKER MODE

Code Execution

If is the first time, run this commands:

docker volume create db-volume
docker-compose up -d
docker-compose down
docker-compose up -d
python rasa_x_commands.py create --update admin me <password_rasa_server> (i.e. password)
docker-compose down
docker-compose up -d

Otherwise, in TESI_POLI_POBOT directory in console run only this command:

  • docker-compose up -d

Rasa Bot - Slack Connection

After all container is in running mode, in web browser go in `http:://localhost:80' and insert the password choose the first time. (i.e. password)

If rasa x server not contain NLU data (possible first time) you can upload the file directly using interface of rasa x server in Training -> NLU data / Stories / Rules / Configuration (copy and paste the content of config choose in TESI_POLI_POBOT directory)

If you want to connect to slack:

  • after training and running the server in Anaconda console (see ## Execution of code paragraph):
    • in BOT_RASA/ngrok directory run this command (in console prompt):
      • ngrok http 80 to create a tunnel for localhost:80 address:
      • select the forwarding address choose to ngrok ({address} = http://<number_code>.ngrok.io)
      • in Slack App link save the address (selecting in Features menu):
        • Interactivity & Shortcut > Request URL: ({address}/core/webhooks/slack/webhook) > Save Changes
        • OAuth & Permissions > Redirect URLs > Add : ({address}/core/webhooks/slack/webhook) > Save URLs
        • Event Subscriptions > Enable Events (Request URL) > Change: ({address}/core/webhooks/slack/webhook) > Save Changes
      • expired time of ngrok address: 2 hours. (when we will use a public address, ngrok will become USELESS)
  • tokens bot save as environment variable in PC server (for security issue)
  • Slack bot: link

RASA - TEST DATA

Test stories in tests directory

  • if you want tests stories with cross-validation:
    • rasa train --config configs/{file_cofiguration}.yml --fixed-model-name {model_name} (if model does not exist)
    • rasa test --config configs/{file_cofiguration}.yml --cross-validation --runs {time_runs} --folds {num_folds} --out {dir_out} --model {model_name}

Test NLU data

  • if you want test only the NLU data splitted:

    • rasa train nlu --nlu train_test_split/training_data.yml --config configs/{file_cofiguration}.yml --fixed-model-name ./models_NLU/{model_name} (if model does not exist)
    • rasa test nlu --nlu train_test_split/test_data.yml --out {dir_out} --model ./models_NLU/{model_name}
  • if you want test only the NLU data totally:

    • rasa train nlu --config configs/{file_cofiguration}.yml --fixed-model-name {model_name} (if model does not exist)
    • rasa test nlu --nlu train_test_split/test_data.yml --out {dir_out} --model {model_name}

Test CORE data

  • if you want test only the CORE data:
    • rasa train --config configs/{file_cofiguration}.yml --fixed-model-name {model_name} (if model does not exist)
    • rasa test core --stories tests/test_stories.yml --out {dir_out} --model {model_name}
Owner
cairone_fiorentino97
cairone_fiorentino97
PyTorch implementation of EGVSR: Efficcient & Generic Video Super-Resolution (VSR)

This is a PyTorch implementation of EGVSR: Efficcient & Generic Video Super-Resolution (VSR), using subpixel convolution to optimize the inference speed of TecoGAN VSR model. Please refer to the offi

789 Jan 04, 2023
Official implementation of Self-supervised Graph Attention Networks (SuperGAT), ICLR 2021.

SuperGAT Official implementation of Self-supervised Graph Attention Networks (SuperGAT). This model is presented at How to Find Your Friendly Neighbor

Dongkwan Kim 127 Dec 28, 2022
Deep Hedging Demo - An Example of Using Machine Learning for Derivative Pricing.

Deep Hedging Demo Pricing Derivatives using Machine Learning 1) Jupyter version: Run ./colab/deep_hedging_colab.ipynb on Colab. 2) Gui version: Run py

Yu Man Tam 102 Jan 06, 2023
Code for "Multi-Time Attention Networks for Irregularly Sampled Time Series", ICLR 2021.

Multi-Time Attention Networks (mTANs) This repository contains the PyTorch implementation for the paper Multi-Time Attention Networks for Irregularly

The Laboratory for Robust and Efficient Machine Learning 68 Dec 17, 2022
CS506-Spring2022 - Code and Slides for Boston University CS 506

CS 506 - Computational Tools for Data Science Code, slides, and notes for Boston

Lance Galletti 17 May 06, 2022
Non-Metric Space Library (NMSLIB): An efficient similarity search library and a toolkit for evaluation of k-NN methods for generic non-metric spaces.

Non-Metric Space Library (NMSLIB) Important Notes NMSLIB is generic but fast, see the results of ANN benchmarks. A standalone implementation of our fa

2.9k Jan 04, 2023
[2021 MultiMedia] CONQUER: Contextual Query-aware Ranking for Video Corpus Moment Retrieval

CONQUER: Contexutal Query-aware Ranking for Video Corpus Moment Retreival PyTorch implementation of CONQUER: Contexutal Query-aware Ranking for Video

Hou zhijian 23 Dec 26, 2022
BigbrotherBENL - Face recognition on the Big Brother episodes in Belgium and the Netherlands.

BigbrotherBENL - Face recognition on the Big Brother episodes in Belgium and the Netherlands. Keeping statistics of whom are most visible and recognisable in the series and wether or not it has an im

Frederik 2 Jan 04, 2022
ICCV2021: Code for 'Spatial Uncertainty-Aware Semi-Supervised Crowd Counting'

ICCV2021: Code for 'Spatial Uncertainty-Aware Semi-Supervised Crowd Counting'

Yanda Meng 14 May 13, 2022
Evaluating different engineering tricks that make RL work

Reinforcement Learning Tricks, Index This repository contains the code for the paper "Distilling Reinforcement Learning Tricks for Video Games". Short

Anssi 15 Dec 26, 2022
A simple rest api that classifies pneumonia infection weather it is Normal, Pneumonia Virus or Pneumonia Bacteria from a chest-x-ray image.

This is a simple rest api that classifies pneumonia infection weather it is Normal, Pneumonia Virus or Pneumonia Bacteria from a chest-x-ray image.

crispengari 3 Jan 08, 2022
[CVPR 2021] Official PyTorch Implementation for "Iterative Filter Adaptive Network for Single Image Defocus Deblurring"

IFAN: Iterative Filter Adaptive Network for Single Image Defocus Deblurring Checkout for the demo (GUI/Google Colab)! The GUI version might occasional

Junyong Lee 173 Dec 30, 2022
RM Operation can equivalently convert ResNet to VGG, which is better for pruning; and can help RepVGG perform better when the depth is large.

RM Operation can equivalently convert ResNet to VGG, which is better for pruning; and can help RepVGG perform better when the depth is large.

184 Jan 04, 2023
The code for our paper Semi-Supervised Learning with Multi-Head Co-Training

Semi-Supervised Learning with Multi-Head Co-Training (PyTorch) Abstract Co-training, extended from self-training, is one of the frameworks for semi-su

cmc 6 Dec 04, 2022
Auto grind btdb2 exp for tower

Bloons TD Battles 2 EXP Grinder Auto grind btdb2 exp for towers Setup I suggest checking out every screenshot to see what they are supposed to be, so

Vincent 6 Jul 29, 2022
Supplementary code for SIGGRAPH 2021 paper: Discovering Diverse Athletic Jumping Strategies

SIGGRAPH 2021: Discovering Diverse Athletic Jumping Strategies project page paper demo video Prerequisites Important Notes We suspect there are bugs i

54 Dec 06, 2022
Texture mapping with variational auto-encoders

vae-textures This is an experiment with using variational autoencoders (VAEs) to perform mesh parameterization. This was also my first project using J

Alex Nichol 41 May 24, 2022
Wordle-solver - Wordle answer generation program in python

🟨 Wordle Solver 🟩 Wordle answer generation program in python ✔️ Requirements U

Dahyun Kang 4 May 28, 2022
SimpleDepthEstimation - An unified codebase for NN-based monocular depth estimation methods

SimpleDepthEstimation Introduction This is an unified codebase for NN-based monocular depth estimation methods, the framework is based on detectron2 (

8 Dec 13, 2022
A PyTorch Library for Accelerating 3D Deep Learning Research

Kaolin: A Pytorch Library for Accelerating 3D Deep Learning Research Overview NVIDIA Kaolin library provides a PyTorch API for working with a variety

NVIDIA GameWorks 3.5k Jan 07, 2023