PyTorch implementation of normalizing flow models

Overview

Normalizing Flows

This is a PyTorch implementation of several normalizing flows, including a variational autoencoder. It is used in the articles A Gradient Based Strategy for Hamiltonian Monte Carlo Hyperparameter Optimization and Resampling Base Distributions of Normalizing Flows.

Implemented Flows

Methods of Installation

The latest version of the package can be installed via pip

pip install --upgrade git+https://github.com/VincentStimper/normalizing-flows.git

If you want to use a GPU, make sure that PyTorch is set up correctly by by following the instructions at the PyTorch website.

To run the example notebooks clone the repository first

git clone https://github.com/VincentStimper/normalizing-flows.git

and then install the dependencies.

pip install -r requirements_examples.txt
Comments
  • Replication of comparable glow with papers

    Replication of comparable glow with papers

    Hi, Thanks for developing this package. I find it very neat and flexible and would like to use it for my research. I noticed that in the paper "Resampling Base Distributions of Normalizing Flows", the bpd of your glow can reach 3.2~3.3, which is comparable to the original paper.

    I was wondering if it is possible to share your training scripts and details to train glow on cifar10 to achieve the above bpd. The current example notebook is too sketchy and only results in bpd of 3.8. Thanks very much!

    opened by prclibo 1
  • Changed ActNorm flag to buffer to allow saving

    Changed ActNorm flag to buffer to allow saving

    Without it being a buffer, when you load a model and sample from it, the flow thinks it is the first run through so overwrites all the trained ActNorm parameters.

    opened by arc82 1
  • Fix deprecation warning

    Fix deprecation warning

    Fixes the deprecation warning documented in https://github.com/VincentStimper/normalizing-flows/issues/12.


    Sanity check: Running this before the change:

    import normflows as nf
    import torch
    
    torch.manual_seed(42)
    
    flow = nf.NormalizingFlow(
        nf.distributions.DiagGaussian(1, trainable=False),
        [
            nf.flows.AutoregressiveRationalQuadraticSpline(1, 1, 1),
            nf.flows.LULinearPermute(1)
        ]
    )
    
    with torch.no_grad():
        samples_flow, _ = flow.sample(4)
    
    print(samples_flow)
    

    gives:

    tensor([[0.4528],
            [0.6410],
            [0.5200],
            [0.5567]])
    

    After the change, the output stays the same.

    opened by timothygebhard 0
  • Sampling from flow raises deprecation warning

    Sampling from flow raises deprecation warning

    Running the following minimal example:

    import normflows as nf
    import torch
    
    torch.manual_seed(42)
    
    flow = nf.NormalizingFlow(
        nf.distributions.DiagGaussian(1, trainable=False),
        [
            nf.flows.AutoregressiveRationalQuadraticSpline(1, 1, 1),
            nf.flows.LULinearPermute(1)
        ]
    )
    
    with torch.no_grad():
        samples_flow, _ = flow.sample(4)
    
    print(samples_flow)
    

    raises a UserWarning about an upcoming deprecation:

    /Users/timothy/Desktop/normalizing-flows/normflows/flows/mixing.py:437: UserWarning: torch.triangular_solve is deprecated in favor of torch.linalg.solve_triangular and will be removed in a future PyTorch release.
    torch.linalg.solve_triangular has its arguments reversed and does not return a copy of one of the inputs.
    X = torch.triangular_solve(B, A).solution
    should be replaced with
    X = torch.linalg.solve_triangular(A, B). (Triggered internally at  /Users/runner/work/pytorch/pytorch/pytorch/aten/src/ATen/native/BatchLinearAlgebra.cpp:2189.)
      outputs, _ = torch.triangular_solve(
    

    I will submit a PR shortly that fixes the issue 🙂

    opened by timothygebhard 0
  • Vberenz/mkdocs

    Vberenz/mkdocs

    Added mkdocs structure, and refactored the docstrings (and applied black)

    to install the dependencies for documentation building:

    pip install -e ".[docs]"
    

    To see the doc:

    mkdocs serve
    

    This starts a live server. Modifications of the documentation are rendered live (excluded the modications to docstrings)

    To build the docs:

    mkdocs build
    

    this will create the site folder (including index.html)

    To expend the docs:

    Markdown files can be added in the docs folder, then the "nav" section of the mkdocs.yml file has to be updated, e.g.

    nav:
      - about: index.md
      - API: references.md
      - my other page: mymarkdown.md
    
    • good to know: markdown can be used in the docstrings.
    • apparently, deploying the documentation online on github after built is as simple as calling mkdocs gh-deploy (I did not try it yet)

    I still need to do:

    • continuous build on github (documentation is rebuilt and deployed at each merge into master)
    • a correction pass on the docstrings (I updated them, but did not check them one by one yet)
    • the layout is not so nice (especially for the API), needs to be improved
    • apparently mkdocs allows to display jupyter notebooks, I need to dig
    opened by vincentberenz 0
  • feat: add optional gradient clipping to HMC flow

    feat: add optional gradient clipping to HMC flow

    Add the option to clip the gradient of the target log prob within HMC. For some target distributions, the log prob may have some very large gradients which can cause numerical instability - the gradient clipping can help with this.

    opened by lollcat 0
  • Added minor fixes for bugs and warnings

    Added minor fixes for bugs and warnings

    This commit made three changes to the original repo:

    1. Fixes the warning regarding the 'is' keyword:
    /home/donglin/Github/normalizing-flows/normflow/nets.py:45: SyntaxWarning: "is" with a literal. Did you mean "=="?
      if output_fn is "sigmoid":
    /home/donglin/Github/normalizing-flows/normflow/nets.py:47: SyntaxWarning: "is" with a literal. Did you mean "=="?
      elif output_fn is "relu":
    /home/donglin/Github/normalizing-flows/normflow/nets.py:49: SyntaxWarning: "is" with a literal. Did you mean "=="?
      elif output_fn is "tanh":
    /home/donglin/Github/normalizing-flows/normflow/nets.py:51: SyntaxWarning: "is" with a literal. Did you mean "=="?
      elif output_fn is "clampexp":
    
    1. Fixes the warning regarding 'torch.qr':
    /home/donglin/Github/normalizing-flows/normflow/flows.py:616: UserWarning: torch.qr is deprecated in favor of torch.linalg.qr and will be removed in a future PyTorch release.
    The boolean parameter 'some' has been replaced with a string parameter 'mode'.
    Q, R = torch.qr(A, some)
    should be replaced with
    Q, R = torch.linalg.qr(A, 'reduced' if some else 'complete') (Triggered internally at  /opt/conda/conda-bld/pytorch_1623448278899/work/aten/src/ATen/native/BatchLinearAlgebra.cpp:1940.)
      Q = torch.qr(torch.randn(self.num_channels, self.num_channels))[0]
    
    1. Eliminated the "nf.util.ToDevice" call during the data pre-processing in glow.ipynb
    opened by Donglin-Wang2 0
  • RuntimeError: output with shape [32] doesn't match the broadcast shape [1, 32]

    RuntimeError: output with shape [32] doesn't match the broadcast shape [1, 32]

    Hi, when doing experiments, I'd suggest doing some other tutorials, for example for the ClassCondFlow, as while trying to one on my own, I keep encountering this error.

    opened by maulberto3 0
  • Normalizing Flow vs Normalizing Flow VAE behavior

    Normalizing Flow vs Normalizing Flow VAE behavior

    I can't help but to wonder why the NormalizingFlow class use the flows' inverse method when computing forward_kl, but, on the contrary, when using the NormalizingFlowVAE, it uses the flows' forward method.

    This way, when trying to fit MNIST with NormalizingFlow, when training and passing a batch of say (64, 784) images I get the following error:

         34 for i in range(len(self.flows) - 1, -1, -1):
         35     z, log_det = self.flows[i].inverse(z)
    ---> 36     log_q += log_det
         37 log_q += self.q0.log_prob(z)
         38 return -torch.mean(log_q)
    
    RuntimeError: output with shape [64] doesn't match the broadcast shape [1, 64]
    

    Any help/suggestion?

    opened by maulberto3 0
  • Inconsistency between log_q and log_p in Encoder and NormalizingFlowVAE

    Inconsistency between log_q and log_p in Encoder and NormalizingFlowVAE

    In NormalizingFlowVAE class in core.py, this line says that the encoder outputs log_q:

    z, log_q = self.q0(x, num_samples=num_samples)

    Suppose that, as in this example, the encoder Gaussian (q0) is parameterized by an MLP. Looking at distributions.encoder.py source code, the forward method of NNDiagGaussian class says that it outputs log_p:

    return z, log_p

    Inconsistency or not?

    opened by maulberto3 0
  • NormalizingFlow class in core.py does not provide context in forward_kld

    NormalizingFlow class in core.py does not provide context in forward_kld

    Thank you for a repo that's easy to handle with a normalizing flow of one's choice!

    I would like to implement a normalizing flow that optimizes multiple target distributions at once depending on the context I would provide to it. Yet, currently, afai, no context can be providided in the .forward_kld method of the NormalizingFlow class.

    Would be great if that's added!

    Cheers,

    Yves

    opened by ybernaerts 3
  • Decoupled sampling and generation interfaces

    Decoupled sampling and generation interfaces

    Hi, this PR added some new interface to get better control during sampling, e.g. to repeatedly generate on same latent code when training the model. Please check if it is useful as a merge:)

    opened by prclibo 0
Releases(v1.5)
  • v1.5(Dec 21, 2022)

    A rendered documentation is added to the repository, which is available on https://vincentstimper.github.io/normalizing-flows/.

    Test were added for several flow modules, which can be run via pytest. With these new tests, several bugs were detected and fixed. The current coverage is about 61%. More tests will be added in the future as well as automated testing and coverage analysis on GitHub.

    Moreover, the code is adapted to the syntax of newer PyTorch Versions.

    Source code(tar.gz)
    Source code(zip)
  • v1.4(Jul 26, 2022)

    The package is now available on PyPI, which means that it can just be installed with

    pip install normflows
    

    from now on. The code was reformatted to conform to the black coding style.

    Moreover, the following fixes and additions are included:

    • The computation of the alpha-divergence objective was corrected.
    • A bug regarding sampling from the mixture of Gaussian base distribution was fixed.
    • A flow layer to warp periodic variables was added.
    • The dependency from the Residual Flow repository was removed.
    Source code(tar.gz)
    Source code(zip)
  • v1.2(Apr 5, 2022)

    The code was reorganized to be more hierarchical and readable. Also all required functionality for Neural Spline Flows were added to the repository to remove the dependency on the original Neural Spline Flow repository.

    Furthermore, the following features were introduced:

    • Class to reverse a flow layer
    • Class to build a chain of flow layers
    • Affine Masked Autoregressive Flows (MAF)
    • Circular Neural Spline Flows
    • Neural Spline Flows with circular and non-circular coordinates
    Source code(tar.gz)
    Source code(zip)
  • v1.1(Feb 6, 2022)

  • v1.0(Nov 25, 2021)

    Normalizing flow library comprising the most popular flow architectures, among them Real NVP, Glow, Neural Spline Flow, and Residual Flow.

    Source code(tar.gz)
    Source code(zip)
Owner
Vincent Stimper
PhD student in Machine Learning at the University of Cambridge and the Max Planck Institute for Intelligent Systems
Vincent Stimper
Homepage of paper: Paint Transformer: Feed Forward Neural Painting with Stroke Prediction, ICCV 2021.

Paint Transformer: Feed Forward Neural Painting with Stroke Prediction [Paper] [Official Paddle Implementation] [Huggingface Gradio Demo] [Unofficial

442 Dec 16, 2022
Unleashing Transformers: Parallel Token Prediction with Discrete Absorbing Diffusion for Fast High-Resolution Image Generation from Vector-Quantized Codes

Unleashing Transformers: Parallel Token Prediction with Discrete Absorbing Diffusion for Fast High-Resolution Image Generation from Vector-Quantized C

Sam Bond-Taylor 139 Jan 04, 2023
novel deep learning research works with PaddlePaddle

Research 发布基于飞桨的前沿研究工作,包括CV、NLP、KG、STDM等领域的顶会论文和比赛冠军模型。 目录 计算机视觉(Computer Vision) 自然语言处理(Natrual Language Processing) 知识图谱(Knowledge Graph) 时空数据挖掘(Spa

1.5k Dec 29, 2022
Simple and Distributed Machine Learning

Synapse Machine Learning SynapseML (previously MMLSpark) is an open source library to simplify the creation of scalable machine learning pipelines. Sy

Microsoft 3.9k Dec 30, 2022
An implementation of DeepMind's Relational Recurrent Neural Networks in PyTorch.

relational-rnn-pytorch An implementation of DeepMind's Relational Recurrent Neural Networks (Santoro et al. 2018) in PyTorch. Relational Memory Core (

Sang-gil Lee 241 Nov 18, 2022
Create time-series datacubes for supervised machine learning with ICEYE SAR images.

ICEcube is a Python library intended to help organize SAR images and annotations for supervised machine learning applications. The library generates m

ICEYE Ltd 65 Jan 03, 2023
A PyTorch implementation: "LASAFT-Net-v2: Listen, Attend and Separate by Attentively aggregating Frequency Transformation"

LASAFT-Net-v2 Listen, Attend and Separate by Attentively aggregating Frequency Transformation Woosung Choi, Yeong-Seok Jeong, Jinsung Kim, Jaehwa Chun

Woosung Choi 29 Jun 04, 2022
Pytorch implementation of MaskFlownet

MaskFlownet-Pytorch Unofficial PyTorch implementation of MaskFlownet (https://github.com/microsoft/MaskFlownet). Tested with: PyTorch 1.5.0 CUDA 10.1

Daniele Cattaneo 84 Nov 02, 2022
[NeurIPS 2021] Galerkin Transformer: a linear attention without softmax

[NeurIPS 2021] Galerkin Transformer: linear attention without softmax Summary A non-numerical analyst oriented explanation on Toward Data Science abou

Shuhao Cao 159 Dec 20, 2022
Efficient-GlobalPointer - Pytorch Efficient GlobalPointer

引言 感谢苏神带来的模型,原文地址:https://spaces.ac.cn/archives/8877 如何运行 对应模型EfficientGlobalPoi

powerycy 40 Dec 14, 2022
PyTorch implementation of DUL (Data Uncertainty Learning in Face Recognition, CVPR2020)

PyTorch implementation of DUL (Data Uncertainty Learning in Face Recognition, CVPR2020)

Mouxiao Huang 20 Nov 15, 2022
Tutorial in Python targeted at Epidemiologists. Will discuss the basics of analysis in Python 3

Python-for-Epidemiologists This repository is an introduction to epidemiology analyses in Python. Additionally, the tutorials for my library zEpid are

Paul Zivich 120 Nov 17, 2022
Reinforcement learning models in ViZDoom environment

DoomNet DoomNet is a ViZDoom agent trained by reinforcement learning. The agent is a neural network that outputs a probability of actions given only p

Andrey Kolishchak 126 Dec 09, 2022
Implementation of Uniformer, a simple attention and 3d convolutional net that achieved SOTA in a number of video classification tasks

Uniformer - Pytorch Implementation of Uniformer, a simple attention and 3d convolutional net that achieved SOTA in a number of video classification ta

Phil Wang 90 Nov 24, 2022
The Turing Change Point Detection Benchmark: An Extensive Benchmark Evaluation of Change Point Detection Algorithms on real-world data

Turing Change Point Detection Benchmark Welcome to the repository for the Turing Change Point Detection Benchmark, a benchmark evaluation of change po

The Alan Turing Institute 85 Dec 28, 2022
IJCAI2020 & IJCV 2020 :city_sunrise: Unsupervised Scene Adaptation with Memory Regularization in vivo

Seg_Uncertainty In this repo, we provide the code for the two papers, i.e., MRNet:Unsupervised Scene Adaptation with Memory Regularization in vivo, IJ

Zhedong Zheng 348 Jan 05, 2023
Experiments with Fourier layers on simulation data.

Factorized Fourier Neural Operators This repository contains the code to reproduce the results in our NeurIPS 2021 ML4PS workshop paper, Factorized Fo

Alasdair Tran 57 Dec 25, 2022
Python wrapper to access the amazon selling partner API

PYTHON-AMAZON-SP-API Amazon Selling-Partner API If you have questions, please join on slack Contributions very welcome! Installation pip install pytho

Michael Primke 330 Jan 06, 2023
FANet - Real-time Semantic Segmentation with Fast Attention

FANet Real-time Semantic Segmentation with Fast Attention Ping Hu, Federico Perazzi, Fabian Caba Heilbron, Oliver Wang, Zhe Lin, Kate Saenko , Stan Sc

Ping Hu 42 Nov 30, 2022
Official source code of Fast Point Transformer, CVPR 2022

Fast Point Transformer Project Page | Paper This repository contains the official source code and data for our paper: Fast Point Transformer Chunghyun

182 Dec 23, 2022