Pytorch implementation of MaskFlownet

Overview

MaskFlownet-Pytorch

Unofficial PyTorch implementation of MaskFlownet (https://github.com/microsoft/MaskFlownet).

Tested with:

  • PyTorch 1.5.0
  • CUDA 10.1

Install

The correlation package must be installed first:

cd model/correlation_package
python setup.py install

Inference

Right now, I implemented the inference script for KITTI 2012/2015, MPI Sintel and FlyingChairs.

python predict.py CONFIG -c CHECKPOINT --dataset_cfg DATASET -f ROOT_FOLDER [-b BATCH_SIZE]

For example:

  • python predict.py MaskFlownet.yaml -c 5adNov03-0005_1000000.pth --dataset_cfg sintel.yaml -f ./SINTEL -b 4
  • python predict.py MaskFlownet.yaml -c 8caNov12-1532_300000.pth --dataset_cfg kitti.yaml -f ./KITTI -b 4
  • python predict.py MaskFlownet_S.yaml -c 771Sep25-0735_500000.pth --dataset_cfg chairs.yaml -f ./FLYINGCHAIRS -b 4
  • python predict.py MaskFlownet_S.yaml -c dbbSep30-1206_1000000.pth --dataset_cfg sintel.yaml -f ./SINTEL -b 4

Differences with the original implementation

The results are slightly different from the original implementation:

Checkpoint Network Implementation KITTI2012 KITTI2015 Sintel Clean Sintel Final FlyingChairs
771Sep25 MaskFlownet_S

Original AEPE:
PyTorch AEPE:

4.12
4.18

11.52
11.82

3.38
3.38

4.71
4.70

1.84
1.83

dbbSep30 MaskFlownet_S

Original AEPE:
PyTorch AEPE:

1.27
1.28

1.92
1.93

2.76
2.78

3.29
3.32

2.36
2.36

5adNov03 MaskFlownet

Original AEPE:
PyTorch AEPE:

1.16
1.18

1.66
1.68

2.58
2.59

3.14
3.17

2.23
2.23

8caNov12 MaskFlownet

Original AEPE:
PyTorch AEPE:

0.82
0.82

1.38
1.38

4.34
4.40

5.27
5.33

4.01
3.99

Examples

KITTI Original implementation:

original_visualization

KITTI This implementation:

this_visualization

Sintel Original implementation:

original_visualization

Sintel This implementation:

this_visualization

FlyingChairs Original implementation:

original_visualization

FlyingChairs This implementation:

this_visualization

Notes

If you use my implementation for training, it might happen that you encounter this error:

CUDA error: an illegal memory access was encountered

This is due to a bug in the torchvision implementation of deformable convolutions. (still present in version 0.7.0)

To solve it, you need to use the nightly version of torchvision.

Acknowledgment

Original MXNet implementation: here

correlation_package was taken from flownet2

Owner
Daniele Cattaneo
PostDoc at University of Freiburg. Focus on deep learning for vision-based and LiDAR-based localization, self-driving cars, and sensor fusion.
Daniele Cattaneo
Paaster is a secure by default end-to-end encrypted pastebin built with the objective of simplicity.

Follow the development of our desktop client here Paaster Paaster is a secure by default end-to-end encrypted pastebin built with the objective of sim

Ward 211 Dec 25, 2022
Deep and online learning with spiking neural networks in Python

Introduction The brain is the perfect place to look for inspiration to develop more efficient neural networks. One of the main differences with modern

Jason Eshraghian 447 Jan 03, 2023
X-modaler is a versatile and high-performance codebase for cross-modal analytics.

X-modaler X-modaler is a versatile and high-performance codebase for cross-modal analytics. This codebase unifies comprehensive high-quality modules i

910 Dec 28, 2022
A PyTorch implementation of "Capsule Graph Neural Network" (ICLR 2019).

CapsGNN ⠀⠀ A PyTorch implementation of Capsule Graph Neural Network (ICLR 2019). Abstract The high-quality node embeddings learned from the Graph Neur

Benedek Rozemberczki 1.2k Jan 02, 2023
[IEEE TPAMI21] MobileSal: Extremely Efficient RGB-D Salient Object Detection [PyTorch & Jittor]

MobileSal IEEE TPAMI 2021: MobileSal: Extremely Efficient RGB-D Salient Object Detection This repository contains full training & testing code, and pr

Yu-Huan Wu 52 Jan 06, 2023
Official implementation of NLOS-OT: Passive Non-Line-of-Sight Imaging Using Optimal Transport (IEEE TIP, accepted)

NLOS-OT Official implementation of NLOS-OT: Passive Non-Line-of-Sight Imaging Using Optimal Transport (IEEE TIP, accepted) Description In this reposit

Ruixu Geng(耿瑞旭) 16 Dec 16, 2022
Image-to-Image Translation with Conditional Adversarial Networks (Pix2pix) implementation in keras

pix2pix-keras Pix2pix implementation in keras. Original paper: Image-to-Image Translation with Conditional Adversarial Networks (pix2pix) Paper Author

William Falcon 141 Dec 30, 2022
ComputerVision - This repository aims at realized easy network architecture

ComputerVision This repository aims at realized easy network architecture Colori

DongDong 4 Dec 14, 2022
some academic posters as references. May we have in-person poster session soon!

some academic posters as references. May we have in-person poster session soon!

Bolei Zhou 472 Jan 06, 2023
DilatedNet in Keras for image segmentation

Keras implementation of DilatedNet for semantic segmentation A native Keras implementation of semantic segmentation according to Multi-Scale Context A

303 Mar 15, 2022
Learning Spatio-Temporal Transformer for Visual Tracking

STARK The official implementation of the paper Learning Spatio-Temporal Transformer for Visual Tracking Hiring research interns for visual transformer

Multimedia Research 484 Dec 29, 2022
Rethinking Transformer-based Set Prediction for Object Detection

Rethinking Transformer-based Set Prediction for Object Detection Here are the code for the ICCV paper. The code is adapted from Detectron2 and AdelaiD

Zhiqing Sun 62 Dec 03, 2022
Convert Mission Planner (ArduCopter) Waypoint Missions to Litchi CSV Format to execute on DJI Drones

Mission Planner to Litchi Convert Mission Planner (ArduCopter) Waypoint Surveys to Litchi CSV Format to execute on DJI Drones Litchi doesn't support S

Yaros 24 Dec 09, 2022
Audio Source Separation is the process of separating a mixture into isolated sounds from individual sources

Audio Source Separation is the process of separating a mixture into isolated sounds from individual sources (e.g. just the lead vocals).

Victor Basu 14 Nov 07, 2022
Multi-scale discriminator feature-wise loss function

Multi-Scale Discriminative Feature Loss This repository provides code for Multi-Scale Discriminative Feature (MDF) loss for image reconstruction algor

Graphics and Displays group - University of Cambridge 76 Dec 12, 2022
PyTorch implementation of CVPR'18 - Perturbative Neural Networks

This is an attempt to reproduce results in Perturbative Neural Networks paper. See original repo for details.

Michael Klachko 57 May 14, 2021
Rotary Transformer

[中文|English] Rotary Transformer Rotary Transformer is an MLM pre-trained language model with rotary position embedding (RoPE). The RoPE is a relative

325 Jan 03, 2023
Neural Factorization of Shape and Reflectance Under An Unknown Illumination

NeRFactor [Paper] [Video] [Project] This is the authors' code release for: NeRFactor: Neural Factorization of Shape and Reflectance Under an Unknown I

Google 283 Jan 04, 2023
Implementation of the paper ''Implicit Feature Refinement for Instance Segmentation''.

Implicit Feature Refinement for Instance Segmentation This repository is an official implementation of the ACM Multimedia 2021 paper Implicit Feature

Lufan Ma 17 Dec 28, 2022
Empowering journalists and whistleblowers

Onymochat Empowering journalists and whistleblowers Onymochat is an end-to-end encrypted, decentralized, anonymous chat application. You can also host

Samrat Dutta 19 Sep 02, 2022