Disentangled Face Attribute Editing via Instance-Aware Latent Space Search, accepted by IJCAI 2021.

Related tags

Deep LearningIALS
Overview

Instance-Aware Latent-Space Search

This is a PyTorch implementation of the following paper:

Disentangled Face Attribute Editing via Instance-Aware Latent Space Search, IJCAI 2021.

Yuxuan Han, Jiaolong Yang and Ying Fu

Paper: https://arxiv.org/abs/2105.12660.

Abstract: Recent works have shown that a rich set of semantic directions exist in the latent space of Generative Adversarial Networks (GANs), which enables various facial attribute editing applications. However, existing methods may suffer poor attribute variation disentanglement, leading to unwanted change of other attributes when altering the desired one. The semantic directions used by existing methods are at attribute level, which are difficult to model complex attribute correlations, especially in the presence of attribute distribution bias in GAN’s training set. In this paper, we propose a novel framework (IALS) that performs Instance-Aware Latent-Space Search to find semantic directions for disentangled attribute editing. The instance information is injected by leveraging the supervision from a set of attribute classifiers evaluated on the input images. We further propose a Disentanglement-Transformation (DT) metric to quantify the attribute transformation and disentanglement efficacy and find the optimal control factor between attribute-level and instance-specific directions based on it. Experimental results on both GAN-generated and real-world images collectively show that our method outperforms state-of-the-art methods proposed recently by a wide margin.

Requirements

It's quite easy to create the environment for our model, you only need:

  • Python 3.7 and the basic Anaconda3 environment.
  • PyTorch 1.x with GPU support (a single NVIDIA GTX 1060 is enough).
  • The tqdm library to visualize the progress bar.

Reproduce Results

Download the pretrain directory from here and put it on the root directory of this repository. If your environment meets our requirements, you will see an editing result in test_env.jpg using the following command.

python edit_single_attr.py --seed 0 --step 0.5 --n_steps 4 --dataset ffhq --base interfacegan --attr male --save_path test_env.jpg
  • Edit a random image generated by StyleGAN. You can specify the primal and condition attributes and the seed. Here we set gender as the primal attribute and expression as the condition attribute.
# reproduce our results:
python condition_manipulation.py --seed 0 --step 0.1 --n_steps 30 --dataset ffhq --base interfacegan --attr1 male --attr2 smiling --lambda1 0.75 --lambda2 0 --real_image 0 --save_path rand-ours.jpg

# reproduce interfacegan results:
python condition_manipulation.py --seed 0 --step 0.1 --n_steps 30 --dataset ffhq --base interfacegan --attr1 male --attr2 smiling --lambda1 1 --lambda2 1 --real_image 0 --save_path rand-inter.jpg
  • Edit a real face image via our instance-aware direction. In the pretrain\real_latent_code folder we put lots of pretrained latent code provided by seeprettyface. If you want to edit customized face images, please refer to the next section. Note: If lambda1=lambda2=1, our method degrades to the attribute-level semantic direction based methods like InterfaceGAN and GANSpace.
# reproduce our results:
python condition_manipulation.py --seed 0 --step -0.1 --n_steps 30 --dataset ffhq --base interfacegan --attr1 young --attr2 eyeglasses --lambda1 0.75 --lambda2 0 --real_image 1 --latent_code_path pretrain\real_latent_code\real1.npy --save_path real-ours.jpg

# reproduce interfacegan results: 
python condition_manipulation.py --seed 0 --step -0.1 --n_steps 30 --dataset ffhq --base interfacegan --attr1 young --attr2 eyeglasses --lambda1 1 --lambda2 1 --real_image 1 --latent_code_path pretrain\real_latent_code\real1.npy --save_path real-inter.jpg
  • Compute the attribute-level direction by average the instance-specific direction.
python train_attr_level_direction.py --n_images 500 --attr pose

Editing Your Own Image

Typically you need to follow the steps below:

  1. Obtain the latent code of the real image via GAN Inversion. Here we provide a simple baseline GAN-Inversion method in gan_inversion.py.
python gan_inversion.py --n_iters 500 --img_path image\real_face_sample.jpg
  1. Editing the real face image's latent code with our method.
python condition_manipulation.py --seed 0 --step -0.1 --n_steps 10 --dataset ffhq --base interfacegan --attr1 male --attr2 smiling --lambda1 0.75 --lambda2 0 --real_image 1 --latent_code_path rec.npy --save_path real-ours.jpg

You will see the result like that:

To improve the editing quality, we highly recommand you to use the state-of-the-art GAN inversion method like Id-Invert or pixel2image2pixel. Note: You need to make sure that these GAN inversion methods use the same pretrained StyleGAN weights as us.

Contact

If you have any questions, please contact Yuxuan Han ([email protected]).

Citation

Please cite the following paper if this model helps your research:

@inproceedings{han2021IALS,
    title={Disentangled Face Attribute Editing via Instance-Aware Latent Space Search},
    author={Yuxuan Han, Jiaolong Yang and Ying Fu},
    booktitle={International Joint Conference on Artificial Intelligence},
    year={2021}
}

Acknowledgments

This code borrows the StyleGAN generator implementation from https://github.com/lernapparat/lernapparat and uses the pretrained real image's latent code provided by http://www.seeprettyface.com/index_page6.html. We thank for their great effort!

Owner
Currently a junior student at BIT, interested in computer vision and graphics.
PyTorch Implementation of Region Similarity Representation Learning (ReSim)

ReSim This repository provides the PyTorch implementation of Region Similarity Representation Learning (ReSim) described in this paper: @Article{xiao2

Tete Xiao 74 Jan 03, 2023
EASY - Ensemble Augmented-Shot Y-shaped Learning: State-Of-The-Art Few-Shot Classification with Simple Ingredients.

EASY - Ensemble Augmented-Shot Y-shaped Learning: State-Of-The-Art Few-Shot Classification with Simple Ingredients. This repository is the official im

Yassir BENDOU 57 Dec 26, 2022
Implementation of "Learning to Match Features with Seeded Graph Matching Network" ICCV2021

SGMNet Implementation PyTorch implementation of SGMNet for ICCV'21 paper "Learning to Match Features with Seeded Graph Matching Network", by Hongkai C

87 Dec 11, 2022
Code for Iso-Points: Optimizing Neural Implicit Surfaces with Hybrid Representations

Implementation for Iso-Points (CVPR 2021) Official code for paper Iso-Points: Optimizing Neural Implicit Surfaces with Hybrid Representations paper |

Yifan Wang 66 Nov 08, 2022
QI-Q RoboMaster2022 CV Algorithm

QI-Q RoboMaster2022 CV Algorithm

2 Jan 10, 2022
This repository consists of Blender python scripts and corresponding assets to generate variants of the CANDLE dataset

candle-simulator This repository consists of Blender python scripts and corresponding assets to generate variants of the IITH-CANDLE dataset. The rend

1 Dec 15, 2021
Listing arxiv - Personalized list of today's articles from ArXiv

Personalized list of today's articles from ArXiv Print and/or send to your gmail

Lilianne Nakazono 5 Jun 17, 2022
python library for invisible image watermark (blind image watermark)

invisible-watermark invisible-watermark is a python library and command line tool for creating invisible watermark over image.(aka. blink image waterm

Shield Mountain 572 Jan 07, 2023
Official implementation of the Neurips 2021 paper Searching Parameterized AP Loss for Object Detection.

Parameterized AP Loss By Chenxin Tao, Zizhang Li, Xizhou Zhu, Gao Huang, Yong Liu, Jifeng Dai This is the official implementation of the Neurips 2021

46 Jul 06, 2022
A Transformer-Based Feature Segmentation and Region Alignment Method For UAV-View Geo-Localization

University1652-Baseline [Paper] [Slide] [Explore Drone-view Data] [Explore Satellite-view Data] [Explore Street-view Data] [Video Sample] [中文介绍] This

Zhedong Zheng 335 Jan 06, 2023
Pytorch implementation of the paper "COAD: Contrastive Pre-training with Adversarial Fine-tuning for Zero-shot Expert Linking."

Expert-Linking Pytorch implementation of the paper "COAD: Contrastive Pre-training with Adversarial Fine-tuning for Zero-shot Expert Linking." This is

BoChen 12 Jan 01, 2023
MegEngine implementation of YOLOX

Introduction YOLOX is an anchor-free version of YOLO, with a simpler design but better performance! It aims to bridge the gap between research and ind

旷视天元 MegEngine 77 Nov 22, 2022
Fast, differentiable sorting and ranking in PyTorch

Torchsort Fast, differentiable sorting and ranking in PyTorch. Pure PyTorch implementation of Fast Differentiable Sorting and Ranking (Blondel et al.)

Teddy Koker 655 Jan 04, 2023
Repository containing detailed experiments related to the paper "Memotion Analysis through the Lens of Joint Embedding".

Memotion Analysis Through The Lens Of Joint Embedding This repository contains the experiments conducted as described in the paper 'Memotion Analysis

Nethra Gunti 1 Mar 16, 2022
Multiband spectro-radiometric satellite image analysis with K-means cluster algorithm

Multi-band Spectro Radiomertric Image Analysis with K-means Cluster Algorithm Overview Multi-band Spectro Radiomertric images are images comprising of

Chibueze Henry 6 Mar 16, 2022
Mercer Gaussian Process (MGP) and Fourier Gaussian Process (FGP) Regression

Mercer Gaussian Process (MGP) and Fourier Gaussian Process (FGP) Regression We provide the code used in our paper "How Good are Low-Rank Approximation

Aristeidis (Ares) Panos 0 Dec 13, 2021
Implementation supporting the ICCV 2017 paper "GANs for Biological Image Synthesis"

GANs for Biological Image Synthesis This codes implements the ICCV-2017 paper "GANs for Biological Image Synthesis". The paper and its supplementary m

Anton Osokin 95 Nov 25, 2022
Code for CPM-2 Pre-Train

CPM-2 Pre-Train Pre-train CPM-2 此分支为110亿非 MoE 模型的预训练代码,MoE 模型的预训练代码请切换到 moe 分支 CPM-2技术报告请参考link。 0 模型下载 请在智源资源下载页面进行申请,文件介绍如下: 文件名 描述 参数大小 100000.tar

Tsinghua AI 136 Dec 28, 2022
September-Assistant - Open-source Windows Voice Assistant

September - Windows Assistant September is an open-source Windows personal assis

The Nithin Balaji 9 Nov 22, 2022
The official implementation of CVPR 2021 Paper: Improving Weakly Supervised Visual Grounding by Contrastive Knowledge Distillation.

Improving Weakly Supervised Visual Grounding by Contrastive Knowledge Distillation This repository is the official implementation of CVPR 2021 paper:

9 Nov 14, 2022