Linear image-to-image translation

Overview

Linear (Un)supervised Image-to-Image Translation

Teaser image Examples for linear orthogonal transformations in PCA domain, learned without pairing supervision. Training time is about 1 minute.

This repository contains the official pytorch implementation of the following paper:

The Surprising Effectiveness of Linear Unsupervised Image-to-Image Translation
Eitan Richardson and Yair Weiss
https://arxiv.org/abs/2007.12568

Abstract: Unsupervised image-to-image translation is an inherently ill-posed problem. Recent methods based on deep encoder-decoder architectures have shown impressive results, but we show that they only succeed due to a strong locality bias, and they fail to learn very simple nonlocal transformations (e.g. mapping upside down faces to upright faces). When the locality bias is removed, the methods are too powerful and may fail to learn simple local transformations. In this paper we introduce linear encoder-decoder architectures for unsupervised image to image translation. We show that learning is much easier and faster with these architectures and yet the results are surprisingly effective. In particular, we show a number of local problems for which the results of the linear methods are comparable to those of state-of-the-art architectures but with a fraction of the training time, and a number of nonlocal problems for which the state-of-the-art fails while linear methods succeed.

TODO:

  • Code for reproducing the linear image-to-image translation results
  • Code for applying the linear transformation as regularization for deep unsupervisd image-to-image (based on ALAE)
  • Support for user-provided dataset (e.g. image folders)
  • Automatic detection of available GPU resources

Requirements

  • Pytorch (tested with pytorch 1.5.0)
  • faiss (tested with faiss 1.6.3 with GPU support)
  • OpenCV (used only for generating some of the synthetic transformations)

System Requirements

Both the PCA and the nearest-neighbors search in ICP are performed on GPU (using pytorch and faiss). A cuda-enabled GPU with at least 11 GB of RAM is recommended. Since the entire data is loaded to RAM (not in mini-batches), a lot of (CPU) RAM is required as well ...

Code structure

  • run_im2im.py: The main python script for training and testing the linear transformation
  • pca-linear-map.py: The main algorithm. Performs PCA for the two domains, resolves polarity ambiguity and learnes an orthogonal or unconstrained linear transformation. In the unpaired case, ICP iterations are used to find the best correspondence.
  • pca.py: Fast PCA using pytorch and the skewness-based polarity synchronization.
  • utils.py: Misc utils
  • data.py: Loading the dataset and applying the synthetic transformations

Preparing the datasets

The repository does not contain code for loading the datasets, however, the tested datasets were loaded in their standard format. Please download (or link) the datasets under datasets/CelebA, datasets/FFHQ and datasets/edges2shoes.

Learning a linear transformation

usage: run_im2im.py [--dataset {celeba,ffhq,shoes}]
                    [--resolution RESOLUTION]
                    [--a_transform {identity,rot90,vflip,edges,Canny-edges,colorize,super-res,inpaint}]
                    [--pairing {paired,matching,nonmatching,few-matches}]
                    [--matching {nn,cyc-nn}]
                    [--transform_type {orthogonal,linear}] [--n_iters N_ITERS]
                    [--n_components N_COMPONENTS] [--n_train N_TRAIN]
                    [--n_test N_TEST]

Results are saved into the results folder.

Command example for generating the colorization result in the above image (figure 9 in tha paper):

python3 run_im2im.py --dataset ffhq --resolution 128 --a_transform colorize --n_components 2000 --n_train 20000 --n_test 25
Loading matching data for ffhq - colorize ...
100%|██████████████████████████████████████████████████████████████████████████| 20000/20000 [00:04<00:00, 4549.19it/s]
100%|█████████████████████████████████████████████████████████████████████████████████| 25/25 [00:00<00:00, 299.33it/s]
Learning orthogonal transformation in 2000 PCA dimensions...
Got 20000 samples in A and 20000 in B.
PCA A...
PCA B...
Synchronizing...
Using skew-based logic for 1399/2000 dimensions.
PCA representations:  (20000, 2000) (20000, 2000) took: 68.09504985809326
Learning orthogonal transformation using matching sets:
Iter 0: 4191 B-NNs / 1210 consistent, mean NN l2 = 1308.520. took 2.88 sec.
Iter 1: 19634 B-NNs / 19634 consistent, mean NN l2 = 607.715. took 3.46 sec.
Iter 2: 19801 B-NNs / 19801 consistent, mean NN l2 = 204.487. took 3.49 sec.
Iter 3: 19801 B-NNs / 19801 consistent, mean NN l2 = 204.079. Converged - terminating ICP iterations.
Applying the learned transformation on test data...

Limitations

As described in the paper:

  • If the true translation is very non-linear, the learned linear transformation will not model it well.
  • If the image domain has a very complex structure, a large number of PCA coefficients will be required to achieve high quality reconstruction.
  • The nonmatching case (i.e. no matching paires exist) requires larger training sets.

Additional results

Paired

In the two examples above (edge images to real images and inpainting with a relative large part of the image missing), the true transformation is quite nonlinear, making the learned linear transformation less suitable. Here we used the unconstrained linear transformation rather than the orthogonal one. In addition, pairing supervision was used.

NonFaces

Here is an example showing the linear transformation method applied to a different domain (not just aligned faces).

Owner
Eitan Richardson
PhD student and TA at the Hebrew University of Jerusalem / Research Intern at Google
Eitan Richardson
[CVPR 2021] Modular Interactive Video Object Segmentation: Interaction-to-Mask, Propagation and Difference-Aware Fusion

[CVPR 2021] Modular Interactive Video Object Segmentation: Interaction-to-Mask, Propagation and Difference-Aware Fusion

Rex Cheng 364 Jan 03, 2023
Image data augmentation scheduler for albumentations transforms

albu_scheduler Scheduler for albumentations transforms based on PyTorch schedulers interface Usage TransformMultiStepScheduler import albumentations a

19 Aug 04, 2021
A boosting-based Multiple Instance Learning (MIL) package that includes MIL-Boost and MCIL-Boost

A boosting-based Multiple Instance Learning (MIL) package that includes MIL-Boost and MCIL-Boost

Jun-Yan Zhu 27 Aug 08, 2022
Source code for our paper "Molecular Mechanics-Driven Graph Neural Network with Multiplex Graph for Molecular Structures"

Molecular Mechanics-Driven Graph Neural Network with Multiplex Graph for Molecular Structures Code for the Multiplex Molecular Graph Neural Network (M

shzhang 59 Dec 10, 2022
Object Tracking and Detection Using OpenCV

Object tracking is one such application of computer vision where an object is detected in a video, otherwise interpreted as a set of frames, and the object’s trajectory is estimated. For instance, yo

Happy N. Monday 4 Aug 21, 2022
Source code of our TTH paper: Targeted Trojan-Horse Attacks on Language-based Image Retrieval.

Targeted Trojan-Horse Attacks on Language-based Image Retrieval Source code of our TTH paper: Targeted Trojan-Horse Attacks on Language-based Image Re

fine 7 Aug 23, 2022
This is a repository for a No-Code object detection inference API using the OpenVINO. It's supported on both Windows and Linux Operating systems.

OpenVINO Inference API This is a repository for an object detection inference API using the OpenVINO. It's supported on both Windows and Linux Operati

BMW TechOffice MUNICH 68 Nov 24, 2022
ICCV2021, Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet

Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet, ICCV 2021 Update: 2021/03/11: update our new results. Now our T2T-ViT-14 w

YITUTech 1k Dec 31, 2022
ACAV100M: Automatic Curation of Large-Scale Datasets for Audio-Visual Video Representation Learning. In ICCV, 2021.

ACAV100M: Automatic Curation of Large-Scale Datasets for Audio-Visual Video Representation Learning This repository contains the code for our ICCV 202

sangho.lee 28 Nov 08, 2022
OpenFed: A Comprehensive and Versatile Open-Source Federated Learning Framework

OpenFed: A Comprehensive and Versatile Open-Source Federated Learning Framework Introduction OpenFed is a foundational library for federated learning

25 Dec 12, 2022
DeepFaceLive - Live Deep Fake in python, Real-time face swap for PC streaming or video calls

DeepFaceLive - Live Deep Fake in python, Real-time face swap for PC streaming or video calls

8.3k Dec 31, 2022
This is an (re-)implementation of DeepLab-ResNet in TensorFlow for semantic image segmentation on the PASCAL VOC dataset.

DeepLab-ResNet-TensorFlow This is an (re-)implementation of DeepLab-ResNet in TensorFlow for semantic image segmentation on the PASCAL VOC dataset. Up

19 Jan 16, 2022
Implementation of the final project of the course DDA6309 Probabilistic Graphical Model

Task-aware Joint CWS and POS (TCwsPos) This is the implementation of the final project of the course DDA6309 Probabilistic Graphical Models, The Chine

Peng 1 Dec 26, 2021
An imperfect information game is a type of game with asymmetric information

DecisionHoldem An imperfect information game is a type of game with asymmetric information. Compared with perfect information game, imperfect informat

Decision AI 25 Dec 23, 2022
A diff tool for language models

LMdiff Qualitative comparison of large language models. Demo & Paper: http://lmdiff.net LMdiff is a MIT-IBM Watson AI Lab collaboration between: Hendr

Hendrik Strobelt 27 Dec 29, 2022
Code for ACL 2019 Paper: "COMET: Commonsense Transformers for Automatic Knowledge Graph Construction"

To run a generation experiment (either conceptnet or atomic), follow these instructions: First Steps First clone, the repo: git clone https://github.c

Antoine Bosselut 575 Jan 01, 2023
Official implementation of the paper DeFlow: Learning Complex Image Degradations from Unpaired Data with Conditional Flows

DeFlow: Learning Complex Image Degradations from Unpaired Data with Conditional Flows Official implementation of the paper DeFlow: Learning Complex Im

Valentin Wolf 86 Nov 16, 2022
Using python and scikit-learn to make stock predictions

MachineLearningStocks in python: a starter project and guide EDIT as of Feb 2021: MachineLearningStocks is no longer actively maintained MachineLearni

Robert Martin 1.3k Dec 29, 2022
ReLoss - Official implementation for paper "Relational Surrogate Loss Learning" ICLR 2022

Relational Surrogate Loss Learning (ReLoss) Official implementation for paper "R

Tao Huang 31 Nov 22, 2022
A Nim frontend for pytorch, aiming to be mostly auto-generated and internally using ATen.

Master Release Pytorch - Py + Nim A Nim frontend for pytorch, aiming to be mostly auto-generated and internally using ATen. Because Nim compiles to C+

Giovanni Petrantoni 425 Dec 22, 2022