Linear image-to-image translation

Overview

Linear (Un)supervised Image-to-Image Translation

Teaser image Examples for linear orthogonal transformations in PCA domain, learned without pairing supervision. Training time is about 1 minute.

This repository contains the official pytorch implementation of the following paper:

The Surprising Effectiveness of Linear Unsupervised Image-to-Image Translation
Eitan Richardson and Yair Weiss
https://arxiv.org/abs/2007.12568

Abstract: Unsupervised image-to-image translation is an inherently ill-posed problem. Recent methods based on deep encoder-decoder architectures have shown impressive results, but we show that they only succeed due to a strong locality bias, and they fail to learn very simple nonlocal transformations (e.g. mapping upside down faces to upright faces). When the locality bias is removed, the methods are too powerful and may fail to learn simple local transformations. In this paper we introduce linear encoder-decoder architectures for unsupervised image to image translation. We show that learning is much easier and faster with these architectures and yet the results are surprisingly effective. In particular, we show a number of local problems for which the results of the linear methods are comparable to those of state-of-the-art architectures but with a fraction of the training time, and a number of nonlocal problems for which the state-of-the-art fails while linear methods succeed.

TODO:

  • Code for reproducing the linear image-to-image translation results
  • Code for applying the linear transformation as regularization for deep unsupervisd image-to-image (based on ALAE)
  • Support for user-provided dataset (e.g. image folders)
  • Automatic detection of available GPU resources

Requirements

  • Pytorch (tested with pytorch 1.5.0)
  • faiss (tested with faiss 1.6.3 with GPU support)
  • OpenCV (used only for generating some of the synthetic transformations)

System Requirements

Both the PCA and the nearest-neighbors search in ICP are performed on GPU (using pytorch and faiss). A cuda-enabled GPU with at least 11 GB of RAM is recommended. Since the entire data is loaded to RAM (not in mini-batches), a lot of (CPU) RAM is required as well ...

Code structure

  • run_im2im.py: The main python script for training and testing the linear transformation
  • pca-linear-map.py: The main algorithm. Performs PCA for the two domains, resolves polarity ambiguity and learnes an orthogonal or unconstrained linear transformation. In the unpaired case, ICP iterations are used to find the best correspondence.
  • pca.py: Fast PCA using pytorch and the skewness-based polarity synchronization.
  • utils.py: Misc utils
  • data.py: Loading the dataset and applying the synthetic transformations

Preparing the datasets

The repository does not contain code for loading the datasets, however, the tested datasets were loaded in their standard format. Please download (or link) the datasets under datasets/CelebA, datasets/FFHQ and datasets/edges2shoes.

Learning a linear transformation

usage: run_im2im.py [--dataset {celeba,ffhq,shoes}]
                    [--resolution RESOLUTION]
                    [--a_transform {identity,rot90,vflip,edges,Canny-edges,colorize,super-res,inpaint}]
                    [--pairing {paired,matching,nonmatching,few-matches}]
                    [--matching {nn,cyc-nn}]
                    [--transform_type {orthogonal,linear}] [--n_iters N_ITERS]
                    [--n_components N_COMPONENTS] [--n_train N_TRAIN]
                    [--n_test N_TEST]

Results are saved into the results folder.

Command example for generating the colorization result in the above image (figure 9 in tha paper):

python3 run_im2im.py --dataset ffhq --resolution 128 --a_transform colorize --n_components 2000 --n_train 20000 --n_test 25
Loading matching data for ffhq - colorize ...
100%|██████████████████████████████████████████████████████████████████████████| 20000/20000 [00:04<00:00, 4549.19it/s]
100%|█████████████████████████████████████████████████████████████████████████████████| 25/25 [00:00<00:00, 299.33it/s]
Learning orthogonal transformation in 2000 PCA dimensions...
Got 20000 samples in A and 20000 in B.
PCA A...
PCA B...
Synchronizing...
Using skew-based logic for 1399/2000 dimensions.
PCA representations:  (20000, 2000) (20000, 2000) took: 68.09504985809326
Learning orthogonal transformation using matching sets:
Iter 0: 4191 B-NNs / 1210 consistent, mean NN l2 = 1308.520. took 2.88 sec.
Iter 1: 19634 B-NNs / 19634 consistent, mean NN l2 = 607.715. took 3.46 sec.
Iter 2: 19801 B-NNs / 19801 consistent, mean NN l2 = 204.487. took 3.49 sec.
Iter 3: 19801 B-NNs / 19801 consistent, mean NN l2 = 204.079. Converged - terminating ICP iterations.
Applying the learned transformation on test data...

Limitations

As described in the paper:

  • If the true translation is very non-linear, the learned linear transformation will not model it well.
  • If the image domain has a very complex structure, a large number of PCA coefficients will be required to achieve high quality reconstruction.
  • The nonmatching case (i.e. no matching paires exist) requires larger training sets.

Additional results

Paired

In the two examples above (edge images to real images and inpainting with a relative large part of the image missing), the true transformation is quite nonlinear, making the learned linear transformation less suitable. Here we used the unconstrained linear transformation rather than the orthogonal one. In addition, pairing supervision was used.

NonFaces

Here is an example showing the linear transformation method applied to a different domain (not just aligned faces).

Owner
Eitan Richardson
PhD student and TA at the Hebrew University of Jerusalem / Research Intern at Google
Eitan Richardson
PyTorch implementation of the wavelet analysis from Torrence & Compo

Continuous Wavelet Transforms in PyTorch This is a PyTorch implementation for the wavelet analysis outlined in Torrence and Compo (BAMS, 1998). The co

Tom Runia 262 Dec 21, 2022
Image-to-Image Translation in PyTorch

CycleGAN and pix2pix in PyTorch New: Please check out contrastive-unpaired-translation (CUT), our new unpaired image-to-image translation model that e

Jun-Yan Zhu 19k Jan 07, 2023
Create Data & AI apps in 20 lines of code with Shimoku

Install with: pip install shimoku-api-python Start with: from os import getenv import shimoku_api_python.client as Shimoku

Shimoku 5 Nov 07, 2022
git《Joint Entity and Relation Extraction with Set Prediction Networks》(2020) GitHub:

Joint Entity and Relation Extraction with Set Prediction Networks Source code for Joint Entity and Relation Extraction with Set Prediction Networks. W

130 Dec 13, 2022
PyTorch Implementation of Fully Convolutional Networks. (Training code to reproduce the original result is available.)

pytorch-fcn PyTorch implementation of Fully Convolutional Networks. Requirements pytorch = 0.2.0 torchvision = 0.1.8 fcn = 6.1.5 Pillow scipy tqdm

Kentaro Wada 1.6k Jan 07, 2023
Extracts data from the database for a graph-node and stores it in parquet files

subgraph-extractor Extracts data from the database for a graph-node and stores it in parquet files Installation For developing, it's recommended to us

Cardstack 0 Jan 10, 2022
A scikit-learn-compatible module for estimating prediction intervals.

|Anaconda|_ MAPIE - Model Agnostic Prediction Interval Estimator MAPIE allows you to easily estimate prediction intervals using your favourite sklearn

SimAI 584 Dec 27, 2022
Kernel Point Convolutions

Created by Hugues THOMAS Introduction Update 27/04/2020: New PyTorch implementation available. With SemanticKitti, and Windows supported. This reposit

Hugues THOMAS 584 Jan 07, 2023
StyleGAN2 - Official TensorFlow Implementation

StyleGAN2 - Official TensorFlow Implementation

NVIDIA Research Projects 10.1k Dec 28, 2022
Additional code for Stable-baselines3 to load and upload models from the Hub.

Hugging Face x Stable-baselines3 A library to load and upload Stable-baselines3 models from the Hub. Installation With pip Examples [Todo: add colab t

Hugging Face 34 Dec 10, 2022
Fre-GAN: Adversarial Frequency-consistent Audio Synthesis

Fre-GAN Vocoder Fre-GAN: Adversarial Frequency-consistent Audio Synthesis Training: python train.py --config config.json Citation: @misc{kim2021frega

Rishikesh (ऋषिकेश) 93 Dec 17, 2022
Stacked Hourglass Network with a Multi-level Attention Mechanism: Where to Look for Intervertebral Disc Labeling

⚠️ ‎‎‎ A more recent and actively-maintained version of this code is available in ivadomed Stacked Hourglass Network with a Multi-level Attention Mech

Reza Azad 14 Oct 24, 2022
Code for CMaskTrack R-CNN (proposed in Occluded Video Instance Segmentation)

CMaskTrack R-CNN for OVIS This repo serves as the official code release of the CMaskTrack R-CNN model on the Occluded Video Instance Segmentation data

Q . J . Y 61 Nov 25, 2022
An Efficient Training Approach for Very Large Scale Face Recognition or F²C for simplicity.

Fast Face Classification (F²C) This is the code of our paper An Efficient Training Approach for Very Large Scale Face Recognition or F²C for simplicit

33 Jun 27, 2021
BABEL: Bodies, Action and Behavior with English Labels [CVPR 2021]

BABEL is a large dataset with language labels describing the actions being performed in mocap sequences. BABEL labels about 43 hours of mocap sequences from AMASS [1] with action labels.

113 Dec 28, 2022
Generic U-Net Tensorflow implementation for image segmentation

Tensorflow Unet Warning This project is discontinued in favour of a Tensorflow 2 compatible reimplementation of this project found under https://githu

Joel Akeret 1.8k Dec 10, 2022
RodoSol-ALPR Dataset

RodoSol-ALPR Dataset This dataset, called RodoSol-ALPR dataset, contains 20,000 images captured by static cameras located at pay tolls owned by the Ro

Rayson Laroca 45 Dec 15, 2022
Mercer Gaussian Process (MGP) and Fourier Gaussian Process (FGP) Regression

Mercer Gaussian Process (MGP) and Fourier Gaussian Process (FGP) Regression We provide the code used in our paper "How Good are Low-Rank Approximation

Aristeidis (Ares) Panos 0 Dec 13, 2021
Jarvis Project is a basic virtual assistant that uses TensorFlow for learning.

Jarvis_proyect Jarvis Project is a basic virtual assistant that uses TensorFlow for learning. Latest version 0.1 Features: Good morning protocol Tell

Anze Kovac 3 Aug 31, 2022
The official repo of the CVPR 2021 paper Group Collaborative Learning for Co-Salient Object Detection .

GCoNet The official repo of the CVPR 2021 paper Group Collaborative Learning for Co-Salient Object Detection . Trained model Download final_gconet.pth

Qi Fan 46 Nov 17, 2022