VOneNet: CNNs with a Primary Visual Cortex Front-End

Related tags

Deep Learningvonenet
Overview

VOneNet: CNNs with a Primary Visual Cortex Front-End

A family of biologically-inspired Convolutional Neural Networks (CNNs). VOneNets have the following features:

  • Fixed-weight neural network model of the primate primary visual cortex (V1) as the front-end.
  • Robust to image perturbations
  • Brain-mapped
  • Flexible: can be adapted to different back-end architectures

read more...

Available Models

(Click on model names to download the weights of ImageNet-trained models. Alternatively, you can use the function get_model in the vonenet package to download the weights.)

Name Description
VOneResNet50 Our best performing VOneNet with a ResNet50 back-end
VOneCORnet-S VOneNet with a recurrent neural network back-end based on the CORnet-S
VOneAlexNet VOneNet with a back-end based on AlexNet

Quick Start

VOneNets was trained with images normalized with mean=[0.5,0.5,0.5] and std=[0.5,0.5,0.5]

More information coming soon...

Longer Motivation

Current state-of-the-art object recognition models are largely based on convolutional neural network (CNN) architectures, which are loosely inspired by the primate visual system. However, these CNNs can be fooled by imperceptibly small, explicitly crafted perturbations, and struggle to recognize objects in corrupted images that are easily recognized by humans. Recently, we observed that CNN models with a neural hidden layer that better matches primate primary visual cortex (V1) are also more robust to adversarial attacks. Inspired by this observation, we developed VOneNets, a new class of hybrid CNN vision models. Each VOneNet contains a fixed weight neural network front-end that simulates primate V1, called the VOneBlock, followed by a neural network back-end adapted from current CNN vision models. The VOneBlock is based on a classical neuroscientific model of V1: the linear-nonlinear-Poisson model, consisting of a biologically-constrained Gabor filter bank, simple and complex cell nonlinearities, and a V1 neuronal stochasticity generator. After training, VOneNets retain high ImageNet performance, but each is substantially more robust, outperforming the base CNNs and state-of-the-art methods by 18% and 3%, respectively, on a conglomerate benchmark of perturbations comprised of white box adversarial attacks and common image corruptions. Additionally, all components of the VOneBlock work in synergy to improve robustness. Read more: Dapello*, Marques*, et al. (biorxiv, 2020)

Requirements

  • Python 3.6+
  • PyTorch 0.4.1+
  • numpy
  • pandas
  • tqdm
  • scipy

Citation

Dapello, J., Marques, T., Schrimpf, M., Geiger, F., Cox, D.D., DiCarlo, J.J. (2020) Simulating a Primary Visual Cortex at the Front of CNNs Improves Robustness to Image Perturbations. biorxiv. doi.org/10.1101/2020.06.16.154542

License

GNU GPL 3+

FAQ

Soon...

Setup and Run

  1. You need to clone it in your local repository $ git clone https://github.com/dicarlolab/vonenet.git

  2. And when you setup its codes, you must need 'val' directory. so here is link. this link is from Korean's blog I refered as below https://seongkyun.github.io/others/2019/03/06/imagenet_dn/

    ** Download link**
    

https://academictorrents.com/collection/imagenet-2012

Once you download that large tar files, you must unzip that files -- all instructions below are refered above link, I only translate it

Unzip training dataset

$ mkdir train && mb ILSVRC2012_img_train.tar train/ && cd train $ tar -xvf ILSVRC2012_img_train.tar $ rm -f ILSVRC2012_img_train.tar (If you want to remove zipped file(tar)) $ find . -name "*.tar" | while read NAME ; do mkdir -p "${NAME%.tar}"; tar -xvf "${NAME}" -C "${NAME%.tar}"; rm -f "${NAME}"; done $ cd ..

Unzip validation dataset

$ mkdir val && mv ILSVRC2012_img_val.tar val/ && cd val && tar -xvf ILSVRC2012_img_val.tar $ wget -qO- https://raw.githubusercontent.com/soumith/imagenetloader.torch/master/valprep.sh | bash

when it's finished, you can see train directory, val directory that 'val' directory is needed when setting up

Caution!!!!

after all execution above, must remove directory or file not having name n0000 -> there will be fault in training -> ex) 'ILSVRC2012_img_train' in train directory, 'ILSVRC2012_img_val.tar' in val directory

  1. if you've done getting data, then we can setting up go to local repository which into you cloned and open terminal (you must check your versions of python, pytorch, cudatoolkit if okay then,) $ python3 setup.py install $ python3 run.py --in_path {directory including above dataset, 'val' directory must be in!}

If you see any GPU related problem especially 'GPU is not available' although you already got

$ python3 run.py --in_path {directory including above dataset, 'val' directory must be in!} --ngpus 0

ngpus is 1 as default. if you don't care running on CPU you do so

Comments
  • GPU requirements

    GPU requirements

    Hi! Thank you so much for releasing the code!

    If I wanted to train the VOneResNet50 on a NVIDIA GeForce RTX 2070 how long should I expect it to take? I'm new to training neural networks this big and am working on a small project for a course, so it would be good to have an estimate.

    Thank you so much!

    Maria Inês

    opened by mariainescravo 4
  • k_exc parameter

    k_exc parameter

    Hi,

    Thanks for releasing your code! Quick question- what is the significance of the k_exc parameter used in the V1 block?

    https://github.com/dicarlolab/vonenet/blob/master/vonenet/modules.py#L91

    Norman

    opened by normster 4
  • Robust Accuracy results not matching

    Robust Accuracy results not matching

    Firstly, thank you for open sourcing the code for your paper. It has been really helpful !!

    I had a small query regarding the robust evaluation of models. I tried to evaluate the pretrained VoneResNet50 model with standard PGD with EOT and I get the following results:

    robust accuracy (top1):0.3666
    robust accuracy (top5):0.635
    

    My PGD parameters were as follows :

    iterations : 64
    norm : L inifity
    epsilon: 0.0009803921569 (= 1/1020)
    eot_iterations : 8
    Library: advertorch 
    

    I used the code in this PR and also checked with another library

    It seems like the top-5 accuracy is closer to the accuracy mentioned in the paper. I'm confused since the paper mentions that the accuracy is always top-1?

    opened by code-Assasin 3
  • Can you provide the trained VOneNet model file onto google drive?

    Can you provide the trained VOneNet model file onto google drive?

    Can you provide the trained VOneNet model file onto google drive so that I can download for my experiments. CIFAR-10, CIFAR-100, ImageNet datasets, do you have the trained model file??

    opened by machanic 2
  • Update README.md

    Update README.md

    There are problems in line 17, 18, 19 README.md. Because When I finished download, system tells me this is wrong extension.

    and add setup and run instructions. please check it and if there some error, please correct it

    opened by comeeasy 1
  • explaining neural variances

    explaining neural variances

    Thank you for the code for the V1Block. Interesting work!

    I was wondering how you exactly compared regular convolutional features and the ones from VOneNet to explain the Neural Variances.

    Since the paper stresses that this model is SoTA in explaining these, I would be really glad if you can include the code for that too / or if you could point me to existing repositories that do that (if you are aware of any), that'd be great too!

    Thanks again!

    opened by vinbhaskara 1
  • fix: added missing argument for restoring model training

    fix: added missing argument for restoring model training

    For restoring the model training, the code already provided the logic but forgot to add the argument to the parser. Now it is able to restore the model training providing the epoch number and the path containing those files.

    opened by ALLIESXO 0
  • How to test the top-scoring Brain Score model - vonenet-resnet50-non-stochastic?

    How to test the top-scoring Brain Score model - vonenet-resnet50-non-stochastic?

    Hi, I am trying to understand what's the correct way to test (using the pretrained model trained on ImageNet) the voneresnet-50-non_stochastic model that is currently scoring two on Brain Score.

    I want the model to be pretrained on ImageNet. When loading the model through net = vonenet.get_model(model_arch='resnet50', pretrained=True) a state_dict file that already contains the noise_level, noise_scale and noise_mode parameter gets loaded (in vonenet/__init__.py line 38. Do the pretrained model performance depends on these values to be fixed at 'neuronal', 0.35 and 0.07? Or can set one of these to 0 (which one?) and just keep using the same pretrained model for testing?

    Thanks, Valerio

    opened by ValerioB88 0
  • Alignment of quadrutre pairs (q0 and q1) in terms of input channels?

    Alignment of quadrutre pairs (q0 and q1) in terms of input channels?

    Hi Tiago and Joel, this is a very cool project.

    The initialize method of the GFB class doesn't set the random seed of randint:

        def initialize(self, sf, theta, sigx, sigy, phase):
            random_channel = torch.randint(0, self.in_channels, (self.out_channels,))
    

    Doesn't this cause the filters of simple_conv_q0 and simple_conv_q1 to be misaligned in terms of input channels?

    opened by Tal-Golan 1
  • add example of adversarial evaluation

    add example of adversarial evaluation

    check out my attack example and let me know what you think.

    I made it entirely self contained in adv_evaluate.py, and I added an example to the README.md

    opened by dapello 0
Owner
The DiCarlo Lab at MIT
Working to discover the neuronal algorithms underlying visual object recognition
The DiCarlo Lab at MIT
Flower classification model that classifies flowers in 10 classes made using transfer learning (~85% accuracy).

flower-classification-inceptionV3 Flower classification model that classifies flowers in 10 classes. Training and validation are done using a pre-anot

Ivan R. Mršulja 1 Dec 12, 2021
InsCLR: Improving Instance Retrieval with Self-Supervision

InsCLR: Improving Instance Retrieval with Self-Supervision This is an official PyTorch implementation of the InsCLR paper. Download Dataset Dataset Im

Zelu Deng 25 Aug 30, 2022
This is project is the implementation of the DeepShift: Towards Multiplication-Less Neural Networks paper

DeepShift This is project is the implementation of the DeepShift: Towards Multiplication-Less Neural Networks paper, that aims to replace multiplicati

Mostafa Elhoushi 88 Dec 23, 2022
VOLO: Vision Outlooker for Visual Recognition

VOLO: Vision Outlooker for Visual Recognition, arxiv This is a PyTorch implementation of our paper. We present Vision Outlooker (VOLO). We show that o

Sea AI Lab 876 Dec 09, 2022
BEGAN in PyTorch

BEGAN in PyTorch This project is still in progress. If you are looking for the working code, use BEGAN-tensorflow. Requirements Python 2.7 Pillow tqdm

Taehoon Kim 260 Dec 07, 2022
EDPN: Enhanced Deep Pyramid Network for Blurry Image Restoration

EDPN: Enhanced Deep Pyramid Network for Blurry Image Restoration Ruikang Xu, Zeyu Xiao, Jie Huang, Yueyi Zhang, Zhiwei Xiong. EDPN: Enhanced Deep Pyra

69 Dec 15, 2022
Simple STAC Catalogs discovery tool.

STAC Catalog Discovery Simple STAC discovery tool. Just paste the STAC Catalog link and press Enter. Details STAC Discovery tool enables discovering d

Mykola Kozyr 21 Oct 19, 2022
Topic Modelling for Humans

gensim – Topic Modelling in Python Gensim is a Python library for topic modelling, document indexing and similarity retrieval with large corpora. Targ

RARE Technologies 13.8k Jan 03, 2023
A simple baseline for the 2022 IEEE GRSS Data Fusion Contest (DFC2022)

DFC2022 Baseline A simple baseline for the 2022 IEEE GRSS Data Fusion Contest (DFC2022) This repository uses TorchGeo, PyTorch Lightning, and Segmenta

isaac 24 Nov 28, 2022
Implementation of Deformable Attention in Pytorch from the paper "Vision Transformer with Deformable Attention"

Deformable Attention Implementation of Deformable Attention from this paper in Pytorch, which appears to be an improvement to what was proposed in DET

Phil Wang 128 Dec 24, 2022
An official PyTorch Implementation of Boundary-aware Self-supervised Learning for Video Scene Segmentation (BaSSL)

An official PyTorch Implementation of Boundary-aware Self-supervised Learning for Video Scene Segmentation (BaSSL)

Kakao Brain 72 Dec 28, 2022
【CVPR 2021, Variational Inference Framework, PyTorch】 From Rain Generation to Rain Removal

From Rain Generation to Rain Removal (CVPR2021) Hong Wang, Zongsheng Yue, Qi Xie, Qian Zhao, Yefeng Zheng, and Deyu Meng [PDF&&Supplementary Material]

Hong Wang 48 Nov 23, 2022
Patch-Based Deep Autoencoder for Point Cloud Geometry Compression

Patch-Based Deep Autoencoder for Point Cloud Geometry Compression Overview The ever-increasing 3D application makes the point cloud compression unprec

17 Dec 05, 2022
Implementation of "Fast and Flexible Temporal Point Processes with Triangular Maps" (Oral @ NeurIPS 2020)

Fast and Flexible Temporal Point Processes with Triangular Maps This repository includes a reference implementation of the algorithms described in "Fa

Oleksandr Shchur 20 Dec 02, 2022
Analysis of rationale selection in neural rationale models

Neural Rationale Interpretability Analysis We analyze the neural rationale models proposed by Lei et al. (2016) and Bastings et al. (2019), as impleme

Yiming Zheng 3 Aug 31, 2022
Process text, including tokenizing and representing sentences as vectors and Applying some concepts like RNN, LSTM and GRU to create a classifier can detect the language in which a sentence is written from among 17 languages.

Language Identifier What is this ? The goal of this project is to create a model that is able to predict a given sentence language through text proces

Hossam Asaad 9 Dec 15, 2022
Code basis for the paper "Camera Condition Monitoring and Readjustment by means of Noise and Blur" (2021)

Camera Condition Monitoring and Readjustment by means of Noise and Blur This repository contains the source code of the paper: Wischow, M., Gallego, G

7 Dec 22, 2022
TorchIO is a Medical image preprocessing and augmentation toolkit for deep learning. Part of the PyTorch Ecosystem.

Medical image preprocessing and augmentation toolkit for deep learning. Part of the PyTorch Ecosystem.

Fernando Pérez-García 1.6k Jan 06, 2023
Deep Learning & 3D Convolutional Neural Networks for Speaker Verification

TensorFlow implementation of 3D Convolutional Neural Networks for Speaker Verification - Official Project Page - Pytorch Implementation This repositor

Amirsina Torfi 753 Dec 17, 2022
Finding Donors for CharityML

Finding-Donors-for-CharityML - Investigated factors that affect the likelihood of charity donations being made based on real census data.

Moamen Abdelkawy 1 Dec 30, 2021