Label Studio is a multi-type data labeling and annotation tool with standardized output format

Overview

GitHub label-studio:build GitHub release

WebsiteDocsTwitterJoin Slack Community

What is Label Studio?

Label Studio is an open source data labeling tool. It lets you label data types like audio, text, images, videos, and time series with a simple and straightforward UI and export to various model formats. It can be used to prepare raw data or improve existing training data to get more accurate ML models.

Gif of Label Studio annotating different types of data

Have a custom dataset? You can customize Label Studio to fit your needs. Read an introductory blog post to learn more.

Try out Label Studio

Install Label Studio locally, or deploy it in a cloud instance. Also you can try Label Studio Teams.

Install locally with Docker

Official Label Studio docker image is here and it can be downloaded with docker pull. Run Label Studio in a Docker container and access it at http://localhost:8080.

docker pull heartexlabs/label-studio:latest
docker run -it -p 8080:8080 -v `pwd`/mydata:/label-studio/data heartexlabs/label-studio:latest

You can find all the generated assets, including SQLite3 database storage label_studio.sqlite3 and uploaded files, in the ./mydata directory.

Override default Docker install

You can override the default launch command by appending the new arguments:

docker run -it -p 8080:8080 -v `pwd`/mydata:/label-studio/data heartexlabs/label-studio:latest label-studio --log-level DEBUG

Build a local image with Docker

If you want to build a local image, run:

docker build -t heartexlabs/label-studio:latest .

Run with Docker Compose

Docker compose script provides production-ready stack consisting of the following components:

  • Label Studio
  • Nginx - proxy web server used to load various static data, including uploaded audio, images, etc.
  • PostgreSQL - production-ready database that replaces less performant SQLite3.

To start using the app from http://localhost run this command:

docker-compose up

Install locally with pip

# Requires >=Python3.6, <3.9
pip install label-studio

# Start the server at http://localhost:8080
label-studio

Install locally with Anaconda

conda create --name label-studio python=3.8
conda activate label-studio
pip install label-studio

Install for local development

You can run the latest Label Studio version locally without installing the package with pip.

# Install all package dependencies
pip install -e .
# Run database migrations
python label_studio/manage.py migrate
# Start the server in development mode at http://localhost:8080
python label_studio/manage.py runserver

Deploy in a cloud instance

You can deploy Label Studio with one click in Heroku, Microsoft Azure, or Google Cloud Platform:

Apply frontend changes

The frontend part of Label Studio app lies in the frontend/ folder and written in React JSX. In case you've made some changes there, the following commands should be run before building / starting the instance:

cd label_studio/frontend/
npm ci
npx webpack
cd ../..
python label_studio/manage.py collectstatic --no-input

Troubleshoot installation

If you see any errors during installation, try to rerun the installation

pip install --ignore-installed label-studio

Install dependencies on Windows

To run Label Studio on Windows, download and install the following wheel packages from Gohlke builds to ensure you're using the correct version of Python:

# Upgrade pip 
pip install -U pip

# If you're running Win64 with Python 3.8, install the packages downloaded from Gohlke:
pip install lxml‑4.5.0‑cp38‑cp38‑win_amd64.whl

# Install label studio
pip install label-studio

What you get from Label Studio

Screenshot of Label Studio data manager grid view with images

  • Multi-user labeling sign up and login, when you create an annotation it's tied to your account.
  • Multiple projects to work on all your datasets in one instance.
  • Streamlined design helps you focus on your task, not how to use the software.
  • Configurable label formats let you customize the visual interface to meet your specific labeling needs.
  • Support for multiple data types including images, audio, text, HTML, time-series, and video.
  • Import from files or from cloud storage in Amazon AWS S3, Google Cloud Storage, or JSON, CSV, TSV, RAR, and ZIP archives.
  • Integration with machine learning models so that you can visualize and compare predictions from different models and perform pre-labeling.
  • Embed it in your data pipeline REST API makes it easy to make it a part of your pipeline

Included templates for labeling data in Label Studio

Label Studio includes a variety of templates to help you label your data, or you can create your own using specifically designed configuration language. The most common templates and use cases for labeling include the following cases:

Set up machine learning models with Label Studio

Connect your favorite machine learning model using the Label Studio Machine Learning SDK. Follow these steps:

  1. Start your own machine learning backend server. See more detailed instructions.
  2. Connect Label Studio to the server on the model page found in project settings.

This lets you:

  • Pre-label your data using model predictions.
  • Do online learning and retrain your model while new annotations are being created.
  • Do active learning by labeling only the most complex examples in your data.

Integrate Label Studio with your existing tools

You can use Label Studio as an independent part of your machine learning workflow or integrate the frontend or backend into your existing tools.

Ecosystem

Project Description
label-studio Server, distributed as a pip package
label-studio-frontend React and JavaScript frontend and can run standalone in a web browser or be embedded into your application.
data-manager React and JavaScript frontend for managing data. Includes the Label Studio Frontend. Relies on the label-studio server or a custom backend with the expected API methods.
label-studio-converter Encode labels in the format of your favorite machine learning library
label-studio-transformers Transformers library connected and configured for use with Label Studio

Roadmap

Want to use The Coolest Feature X but Label Studio doesn't support it? Check out our public roadmap!

Citation

@misc{Label Studio,
  title={{Label Studio}: Data labeling software},
  url={https://github.com/heartexlabs/label-studio},
  note={Open source software available from https://github.com/heartexlabs/label-studio},
  author={
    Maxim Tkachenko and
    Mikhail Malyuk and
    Nikita Shevchenko and
    Andrey Holmanyuk and
    Nikolai Liubimov},
  year={2020-2021},
}

License

This software is licensed under the Apache 2.0 LICENSE © Heartex. 2020-2021

Owner
Heartex
Data labeling and exploration tools for Machine Learning
Heartex
A Strong Baseline for Image Semantic Segmentation

A Strong Baseline for Image Semantic Segmentation Introduction This project is an open source semantic segmentation toolbox based on PyTorch. It is ba

Clark He 49 Sep 20, 2022
This repository contains the source code for the paper "DONeRF: Towards Real-Time Rendering of Compact Neural Radiance Fields using Depth Oracle Networks",

DONeRF: Towards Real-Time Rendering of Compact Neural Radiance Fields using Depth Oracle Networks Project Page | Video | Presentation | Paper | Data L

Facebook Research 281 Dec 22, 2022
Tutorials and implementations for "Self-normalizing networks"

Self-Normalizing Networks Tutorials and implementations for "Self-normalizing networks"(SNNs) as suggested by Klambauer et al. (arXiv pre-print). Vers

Institute of Bioinformatics, Johannes Kepler University Linz 1.6k Jan 07, 2023
GeDML is an easy-to-use generalized deep metric learning library

GeDML is an easy-to-use generalized deep metric learning library

Borui Zhang 32 Dec 05, 2022
Bringing sanity to world of messed-up data

Sanitize sanitize is a Python module for making sure various things (e.g. HTML) are safe to use. It was originally written by Mark Pilgrim and is dist

Alireza Savand 63 Oct 26, 2021
R-package accompanying the paper "Dynamic Factor Model for Functional Time Series: Identification, Estimation, and Prediction"

dffm The goal of dffm is to provide functionality to apply the methods developed in the paper “Dynamic Factor Model for Functional Time Series: Identi

Sven Otto 3 Dec 09, 2022
SAMO: Streaming Architecture Mapping Optimisation

SAMO: Streaming Architecture Mapping Optimiser The SAMO framework provides a method of optimising the mapping of a Convolutional Neural Network model

Alexander Montgomerie-Corcoran 20 Dec 10, 2022
A Benchmark For Measuring Systematic Generalization of Multi-Hierarchical Reasoning

Orchard Dataset This repository contains the code used for generating the Orchard Dataset, as seen in the Multi-Hierarchical Reasoning in Sequences: S

Bill Pung 1 Jun 05, 2022
GPU Programming with Julia - course at the Swiss National Supercomputing Centre (CSCS), ETH Zurich

Course Description The programming language Julia is being more and more adopted in High Performance Computing (HPC) due to its unique way to combine

Samuel Omlin 192 Jan 03, 2023
Code reproduce for paper "Vehicle Re-identification with Viewpoint-aware Metric Learning"

VANET Code reproduce for paper "Vehicle Re-identification with Viewpoint-aware Metric Learning" Introduction This is the implementation of article VAN

EMDATA-AILAB 23 Dec 26, 2022
An automated facial recognition based attendance system (desktop application)

Facial_Recognition_based_Attendance_System An automated facial recognition based attendance system (desktop application) Made using Python, Tkinter an

1 Jun 21, 2022
Improving Calibration for Long-Tailed Recognition (CVPR2021)

MiSLAS Improving Calibration for Long-Tailed Recognition Authors: Zhisheng Zhong, Jiequan Cui, Shu Liu, Jiaya Jia [arXiv] [slide] [BibTeX] Introductio

Jia Research Lab 116 Dec 20, 2022
Notes taking website build with Docker + Django + React.

Notes website. Try it in browser! / But how to run? Description. This is monorepository with notes website. Website provides web interface for creatin

Kirill Zhosul 2 Jul 27, 2022
Python KNN model: Predicting a probability of getting a work visa. Tableau: Non-immigrant visas over the years.

The value of international students to the United States. Probability of getting a non-immigrant visa. Project timeline: Jan 2021 - April 2021 Project

Zinaida Dvoskina 2 Nov 21, 2021
For encoding a text longer than 512 tokens, for example 800. Set max_pos to 800 during both preprocessing and training.

LongScientificFormer For encoding a text longer than 512 tokens, for example 800. Set max_pos to 800 during both preprocessing and training. Some code

Athar Sefid 6 Nov 02, 2022
ALBERT: A Lite BERT for Self-supervised Learning of Language Representations

ALBERT ***************New March 28, 2020 *************** Add a colab tutorial to run fine-tuning for GLUE datasets. ***************New January 7, 2020

Google Research 3k Jan 01, 2023
Official code for our ICCV paper: "From Continuity to Editability: Inverting GANs with Consecutive Images"

GANInversion_with_ConsecutiveImgs Official code for our ICCV paper: "From Continuity to Editability: Inverting GANs with Consecutive Images" https://a

QingyangXu 38 Dec 07, 2022
maximal update parametrization (µP)

Maximal Update Parametrization (μP) and Hyperparameter Transfer (μTransfer) Paper link | Blog link In Tensor Programs V: Tuning Large Neural Networks

Microsoft 694 Jan 03, 2023
learned_optimization: Training and evaluating learned optimizers in JAX

learned_optimization: Training and evaluating learned optimizers in JAX learned_optimization is a research codebase for training learned optimizers. I

Google 533 Dec 30, 2022
Using deep actor-critic model to learn best strategies in pair trading

Deep-Reinforcement-Learning-in-Stock-Trading Using deep actor-critic model to learn best strategies in pair trading Abstract Partially observed Markov

281 Dec 09, 2022