Doubly Robust Off-Policy Evaluation for Ranking Policies under the Cascade Behavior Model

Overview

Doubly Robust Off-Policy Evaluation for Ranking Policies under the Cascade Behavior Model


About

This repository contains the code to replicate the synthetic experiment conducted in the paper "Doubly Robust Off-Policy Evaluation for Ranking Policies under the Cascade Behavior Model" by Haruka Kiyohara, Yuta Saito, Tatsuya Matsuhiro, Yusuke Narita, Nobuyuki Shimizu, and Yasuo Yamamoto, which has been accepted to WSDM2022.

If you find this code useful in your research then please site:

@inproceedings{kiyohara2022doubly,
  author = {Kiyohara, Haruka and Saito, Yuta and Matsuhiro, Tatsuya and Narita, Yusuke and Shimizu, Nobuyuki and Yamamoto, Yasuo},
  title = {Doubly Robust Off-Policy Evaluation for Ranking Policies under the Cascade Behavior Model},
  booktitle = {Proceedings of the 15th International Conference on Web Search and Data Mining},
  pages = {xxx--xxx},
  year = {2022},
}

Dependencies

This repository supports Python 3.7 or newer.

  • numpy==1.20.0
  • pandas==1.2.1
  • scikit-learn==0.24.1
  • matplotlib==3.4.3
  • obp==0.5.2
  • hydra-core==1.0.6

Note that the proposed Cascade-DR estimator is implemented in Open Bandit Pipeline (obp.ope.SlateCascadeDoublyRobust).

Running the code

To conduct the synthetic experiment, run the following commands.

(i) run OPE simulations with varying data size, with the fixed slate size.

python src/main.py setting=n_rounds

(ii), (iii) run OPE simulations with varying slate size and policy similarities, with the fixed data size.

python src/main.py

Once the code is finished executing, you can find the results (squared_error.csv, relative_ee.csv, configuration.csv) in the ./logs/ directory. Lower value is better for squared error and relative estimation error (relative-ee).

Visualize the results

To visualize the results, run the following commands. Make sure that you have executed the above two experiments (by running python src/main.py and python src/main.py setting=default) before visualizing the results.

python src/visualize.py

Then, you will find the following figures (slate size (standard/cascade/independent).png, evaluation policy similarity (standard/cascade/independent).png, data size (standard/cascade/independent).png) in the ./logs/ directory. Lower value is better for the relative-MSE (y-axis).

reward structure Standard Cascade Independent
varying data size (n)
varying slate size (L)
varying evaluation policy similarity (λ)
Owner
Haruka Kiyohara
Tokyo Tech undergrads / interested in (offline) reinforcement learning and off-policy evaluation / intern at negocia, Hanjuku-kaso, Yahoo! Japan Research
Haruka Kiyohara
DCGAN-tensorflow - A tensorflow implementation of Deep Convolutional Generative Adversarial Networks

DCGAN in Tensorflow Tensorflow implementation of Deep Convolutional Generative Adversarial Networks which is a stabilize Generative Adversarial Networ

Taehoon Kim 7.1k Dec 29, 2022
FaceQgen: Semi-Supervised Deep Learning for Face Image Quality Assessment

FaceQgen FaceQgen: Semi-Supervised Deep Learning for Face Image Quality Assessment This repository is based on the paper: "FaceQgen: Semi-Supervised D

Javier Hernandez-Ortega 3 Aug 04, 2022
Deep Learning pipeline for motor-imagery classification.

BCI-ToolBox 1. Introduction BCI-ToolBox is deep learning pipeline for motor-imagery classification. This repo contains five models: ShallowConvNet, De

DongHee 18 Oct 31, 2022
Code for CVPR2021 "Visualizing Adapted Knowledge in Domain Transfer". Visualization for domain adaptation. #explainable-ai

Visualizing Adapted Knowledge in Domain Transfer @inproceedings{hou2021visualizing, title={Visualizing Adapted Knowledge in Domain Transfer}, auth

Yunzhong Hou 80 Dec 25, 2022
Implementation of RegretNet with Pytorch

Dependencies are Python 3, a recent PyTorch, numpy/scipy, tqdm, future and tensorboard. Plotting with Matplotlib. Implementation of the neural network

Horris zhGu 1 Nov 05, 2021
The repository contains source code and models to use PixelNet architecture used for various pixel-level tasks. More details can be accessed at .

PixelNet: Representation of the pixels, by the pixels, and for the pixels. We explore design principles for general pixel-level prediction problems, f

Aayush Bansal 196 Aug 10, 2022
PyTorch implementation of Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation.

ALiBi PyTorch implementation of Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation. Quickstart Clone this reposit

Jake Tae 4 Jul 27, 2022
General Virtual Sketching Framework for Vector Line Art (SIGGRAPH 2021)

General Virtual Sketching Framework for Vector Line Art - SIGGRAPH 2021 Paper | Project Page Outline Dependencies Testing with Trained Weights Trainin

Haoran MO 118 Dec 27, 2022
An efficient toolkit for Face Stylization based on the paper "AgileGAN: Stylizing Portraits by Inversion-Consistent Transfer Learning"

MMGEN-FaceStylor English | 简体中文 Introduction This repo is an efficient toolkit for Face Stylization based on the paper "AgileGAN: Stylizing Portraits

OpenMMLab 182 Dec 27, 2022
Wandb-predictions - WANDB Predictions With Python

WANDB API CI/CD Below we capture the CI/CD scenarios that we would expect with o

Anish Shah 6 Oct 07, 2022
A human-readable PyTorch implementation of "Self-attention Does Not Need O(n^2) Memory"

memory_efficient_attention.pytorch A human-readable PyTorch implementation of "Self-attention Does Not Need O(n^2) Memory" (Rabe&Staats'21). def effic

Ryuichiro Hataya 7 Dec 26, 2022
Unicorn can be used for performance analyses of highly configurable systems with causal reasoning

Unicorn can be used for performance analyses of highly configurable systems with causal reasoning. Users or developers can query Unicorn for a performance task.

AISys Lab 27 Jan 05, 2023
This repository contains the exercises and its solution contained in the book "An Introduction to Statistical Learning" in python.

An-Introduction-to-Statistical-Learning This repository contains the exercises and its solution contained in the book An Introduction to Statistical L

2.1k Jan 02, 2023
Pytorch implementation of COIN, a framework for compression with implicit neural representations 🌸

COIN 🌟 This repo contains a Pytorch implementation of COIN: COmpression with Implicit Neural representations, including code to reproduce all experim

Emilien Dupont 104 Dec 14, 2022
Audio Visual Emotion Recognition using TDA

Audio Visual Emotion Recognition using TDA RAVDESS database with two datasets analyzed: Video and Audio dataset: Audio-Dataset: https://www.kaggle.com

Combinatorial Image Analysis research group 3 May 11, 2022
Predicting lncRNA–protein interactions based on graph autoencoders and collaborative training

Predicting lncRNA–protein interactions based on graph autoencoders and collaborative training Code for our paper "Predicting lncRNA–protein interactio

zhanglabNKU 1 Nov 29, 2022
GBK-GNN: Gated Bi-Kernel Graph Neural Networks for Modeling Both Homophily and Heterophily

GBK-GNN: Gated Bi-Kernel Graph Neural Networks for Modeling Both Homophily and Heterophily Abstract Graph Neural Networks (GNNs) are widely used on a

10 Dec 20, 2022
IDRLnet, a Python toolbox for modeling and solving problems through Physics-Informed Neural Network (PINN) systematically.

IDRLnet IDRLnet is a machine learning library on top of PyTorch. Use IDRLnet if you need a machine learning library that solves both forward and inver

IDRL 105 Dec 17, 2022
A PyTorch Implementation of "Neural Arithmetic Logic Units"

Neural Arithmetic Logic Units [WIP] This is a PyTorch implementation of Neural Arithmetic Logic Units by Andrew Trask, Felix Hill, Scott Reed, Jack Ra

Kevin Zakka 181 Nov 18, 2022