[ECCV 2020] XingGAN for Person Image Generation

Overview

License CC BY-NC-SA 4.0 Python 3.6 Packagist Last Commit Maintenance Contributing Ask Me Anything !

Contents

XingGAN or CrossingGAN

| Project | Paper |
XingGAN for Person Image Generation
Hao Tang12, Song Bai2, Li Zhang2, Philip H.S. Torr2, Nicu Sebe13.
1University of Trento, Italy, 2University of Oxford, UK, 3Huawei Research Ireland, Ireland.
In ECCV 2020.
The repository offers the official implementation of our paper in PyTorch.

In the meantime, check out our related ACM MM 2019 paper Cycle In Cycle Generative Adversarial Networks for Keypoint-Guided Image Generation, BMVC 2020 oral paper Bipartite Graph Reasoning GANs for Person Image Generation, and ICCV 2021 paper Intrinsic-Extrinsic Preserved GANs for Unsupervised 3D Pose Transfer.

Framework

Comparison Results


License

Creative Commons License
Copyright (C) 2020 University of Trento, Italy.

All rights reserved. Licensed under the CC BY-NC-SA 4.0 (Attribution-NonCommercial-ShareAlike 4.0 International)

The code is released for academic research use only. For commercial use, please contact [email protected].

Installation

Clone this repo.

git clone https://github.com/Ha0Tang/XingGAN
cd XingGAN/

This code requires PyTorch 1.0.0 and python 3.6.9+. Please install the following dependencies:

  • pytorch 1.0.0
  • torchvision
  • numpy
  • scipy
  • scikit-image
  • pillow
  • pandas
  • tqdm
  • dominate

To reproduce the results reported in the paper, you need to run experiments on NVIDIA DGX1 with 4 32GB V100 GPUs for DeepFashion, and 1 32GB V100 GPU for Market-1501.

Dataset Preparation

Please follow SelectionGAN to directly download both Market-1501 and DeepFashion datasets.

This repository uses the same dataset format as SelectionGAN and BiGraphGAN. so you can use the same data for all these methods.

Generating Images Using Pretrained Model

Market-1501

sh scripts/download_xinggan_model.sh market

Then,

  1. Change several parameters in test_market.sh.
  2. Run sh test_market.sh for testing.

DeepFashion

sh scripts/download_xinggan_model.sh deepfashion

Then,

  1. Change several parameters in test_deepfashion.sh.
  2. Run sh test_deepfashion.sh for testing.

Train and Test New Models

Market-1501

  1. Change several parameters in train_market.sh.
  2. Run sh train_market.sh for training.
  3. Change several parameters in test_market.sh.
  4. Run sh test_market.sh for testing.

DeepFashion

  1. Change several parameters in train_deepfashion.sh.
  2. Run sh train_deepfashion.sh for training.
  3. Change several parameters in test_deepfashion.sh.
  4. Run sh test_deepfashion.sh for testing.

Evaluation

We adopt SSIM, mask-SSIM, IS, mask-IS, and PCKh for evaluation of Market-1501. SSIM, IS, PCKh for DeepFashion.

  1. SSIM, mask-SSIM, IS, mask-IS: install python3.5, tensorflow 1.4.1, and scikit-image==0.14.2. Then run, python tool/getMetrics_market.py or python tool/getMetrics_fashion.py.

  2. PCKh: install python2, and pip install tensorflow==1.4.0, then set export KERAS_BACKEND=tensorflow. After that, run python tool/crop_market.py or python tool/crop_fashion.py. Next, download pose estimator and put it under the root folder, and run python compute_coordinates.py. Lastly, run python tool/calPCKH_market.py or python tool/calPCKH_fashion.py.

Please refer to Pose-Transfer for more details.

Acknowledgments

This source code is inspired by both Pose-Transfer and SelectionGAN.

Related Projects

BiGraphGAN | GestureGAN | C2GAN | SelectionGAN | Guided-I2I-Translation-Papers

Citation

If you use this code for your research, please consider giving a star and citing our paper 🦖 :

XingGAN

@inproceedings{tang2020xinggan,
  title={XingGAN for Person Image Generation},
  author={Tang, Hao and Bai, Song and Zhang, Li and Torr, Philip HS and Sebe, Nicu},
  booktitle={ECCV},
  year={2020}
}

If you use the original BiGraphGAN, GestureGAN, C2GAN, and SelectionGAN model, please consider giving stars and citing the following papers 🦖 :

BiGraphGAN

@inproceedings{tang2020bipartite,
  title={Bipartite Graph Reasoning GANs for Person Image Generation},
  author={Tang, Hao and Bai, Song and Torr, Philip HS and Sebe, Nicu},
  booktitle={BMVC},
  year={2020}
}

GestureGAN

@article{tang2019unified,
  title={Unified Generative Adversarial Networks for Controllable Image-to-Image Translation},
  author={Tang, Hao and Liu, Hong and Sebe, Nicu},
  journal={IEEE Transactions on Image Processing (TIP)},
  year={2020}
}

@inproceedings{tang2018gesturegan,
  title={GestureGAN for Hand Gesture-to-Gesture Translation in the Wild},
  author={Tang, Hao and Wang, Wei and Xu, Dan and Yan, Yan and Sebe, Nicu},
  booktitle={ACM MM},
  year={2018}
}

C2GAN

@article{tang2021total,
  title={Total Generate: Cycle in Cycle Generative Adversarial Networks for Generating Human Faces, Hands, Bodies, and Natural Scenes},
  author={Tang, Hao and Sebe, Nicu},
  journal={IEEE Transactions on Multimedia (TMM)},
  year={2021}
}

@inproceedings{tang2019cycleincycle,
  title={Cycle In Cycle Generative Adversarial Networks for Keypoint-Guided Image Generation},
  author={Tang, Hao and Xu, Dan and Liu, Gaowen and Wang, Wei and Sebe, Nicu and Yan, Yan},
  booktitle={ACM MM},
  year={2019}
}

SelectionGAN

@inproceedings{tang2019multi,
  title={Multi-channel attention selection gan with cascaded semantic guidance for cross-view image translation},
  author={Tang, Hao and Xu, Dan and Sebe, Nicu and Wang, Yanzhi and Corso, Jason J and Yan, Yan},
  booktitle={CVPR},
  year={2019}
}

@article{tang2020multi,
  title={Multi-channel attention selection gans for guided image-to-image translation},
  author={Tang, Hao and Xu, Dan and Yan, Yan and Corso, Jason J and Torr, Philip HS and Sebe, Nicu},
  journal={arXiv preprint arXiv:2002.01048},
  year={2020}
}

Contributions

If you have any questions/comments/bug reports, feel free to open a github issue or pull a request or e-mail to the author Hao Tang ([email protected]).

Collaborations

I'm always interested in meeting new people and hearing about potential collaborations. If you'd like to work together or get in contact with me, please email [email protected]. Some of our projects are listed here.


Progress is impossible without change, and those who cannot change their minds cannot change anything.

Owner
Hao Tang
To develop a complete mind: Study the science of art; Study the art of science. Learn how to see. Realize that everything connects to everything else.
Hao Tang
Solution to the Weather4cast 2021 challenge

This code was used for the entry by the team "antfugue" for the Weather4cast 2021 Challenge. Below, you can find the instructions for generating predi

Jussi Leinonen 13 Jan 03, 2023
Project page for End-to-end Recovery of Human Shape and Pose

End-to-end Recovery of Human Shape and Pose Angjoo Kanazawa, Michael J. Black, David W. Jacobs, Jitendra Malik CVPR 2018 Project Page Requirements Pyt

1.4k Dec 29, 2022
Pytorch code for paper "Image Compressed Sensing Using Non-local Neural Network" TMM 2021.

NL-CSNet-Pytorch Pytorch code for paper "Image Compressed Sensing Using Non-local Neural Network" TMM 2021. Note: this repo only shows the strategy of

WenxueCui 7 Nov 07, 2022
Styleformer - Official Pytorch Implementation

Styleformer -- Official PyTorch implementation Styleformer: Transformer based Generative Adversarial Networks with Style Vector(https://arxiv.org/abs/

Jeeseung Park 159 Dec 12, 2022
HAR-stacked-residual-bidir-LSTMs - Deep stacked residual bidirectional LSTMs for HAR

HAR-stacked-residual-bidir-LSTM The project is based on this repository which is presented as a tutorial. It consists of Human Activity Recognition (H

Guillaume Chevalier 287 Dec 27, 2022
Code repository for the paper "Doubly-Trained Adversarial Data Augmentation for Neural Machine Translation" with instructions to reproduce the results.

Doubly Trained Neural Machine Translation System for Adversarial Attack and Data Augmentation Languages Experimented: Data Overview: Source Target Tra

Steven Tan 1 Aug 18, 2022
This is the source code for the experiments related to the paper Unsupervised Audio Source Separation Using Differentiable Parametric Source Models

Unsupervised Audio Source Separation Using Differentiable Parametric Source Models This is the source code for the experiments related to the paper Un

30 Oct 19, 2022
Outlier Exposure with Confidence Control for Out-of-Distribution Detection

OOD-detection-using-OECC This repository contains the essential code for the paper Outlier Exposure with Confidence Control for Out-of-Distribution De

Nazim Shaikh 64 Nov 02, 2022
An inofficial PyTorch implementation of PREDATOR based on KPConv.

PREDATOR: Registration of 3D Point Clouds with Low Overlap An inofficial PyTorch implementation of PREDATOR based on KPConv. The code has been tested

ZhuLifa 14 Aug 03, 2022
Source code to accompany Defunctland's video "FASTPASS: A Complicated Legacy"

Shapeland Simulator Source code to accompany Defunctland's video "FASTPASS: A Complicated Legacy" Download the video at https://www.youtube.com/watch?

TouringPlans.com 70 Dec 14, 2022
Code and data form the paper BERT Got a Date: Introducing Transformers to Temporal Tagging

BERT Got a Date: Introducing Transformers to Temporal Tagging Satya Almasian*, Dennis Aumiller*, and Michael Gertz Heidelberg University Contact us vi

54 Dec 04, 2022
Bio-OFC gym implementation and Gym-Fly environment

Bio-OFC gym implementation and Gym-Fly environment This repository includes the gym compatible implementation of the Bio-OFC algorithm from the paper

Siavash Golkar 1 Nov 16, 2021
Weakly Supervised Dense Event Captioning in Videos, i.e. generating multiple sentence descriptions for a video in a weakly-supervised manner.

WSDEC This is the official repo for our NeurIPS paper Weakly Supervised Dense Event Captioning in Videos. Description Repo directories ./: global conf

Melon(Xuguang Duan) 96 Nov 01, 2022
PyTorch implementation of "VRT: A Video Restoration Transformer"

VRT: A Video Restoration Transformer Jingyun Liang, Jiezhang Cao, Yuchen Fan, Kai Zhang, Rakesh Ranjan, Yawei Li, Radu Timofte, Luc Van Gool Computer

Jingyun Liang 837 Jan 09, 2023
Segmentation for medical image.

EfficientSegmentation Introduction EfficientSegmentation is an open source, PyTorch-based segmentation framework for 3D medical image. Features A whol

68 Nov 28, 2022
A modular, open and non-proprietary toolkit for core robotic functionalities by harnessing deep learning

A modular, open and non-proprietary toolkit for core robotic functionalities by harnessing deep learning Website • About • Installation • Using OpenDR

OpenDR 304 Dec 28, 2022
Code corresponding to The Introspective Agent: Interdependence of Strategy, Physiology, and Sensing for Embodied Agents

The Introspective Agent: Interdependence of Strategy, Physiology, and Sensing for Embodied Agents This is the code corresponding to The Introspective

0 Jan 10, 2022
You Only Look Once for Panopitic Driving Perception

You Only 👀 Once for Panoptic 🚗 Perception You Only Look at Once for Panoptic driving Perception by Dong Wu, Manwen Liao, Weitian Zhang, Xinggang Wan

Hust Visual Learning Team 1.4k Jan 04, 2023
A Library for Modelling Probabilistic Hierarchical Graphical Models in PyTorch

A Library for Modelling Probabilistic Hierarchical Graphical Models in PyTorch

Korbinian Pöppel 47 Nov 28, 2022
Ensemble Visual-Inertial Odometry (EnVIO)

Ensemble Visual-Inertial Odometry (EnVIO) Authors : Jae Hyung Jung, Yeongkwon Choe, and Chan Gook Park 1. Overview This is a ROS package of Ensemble V

Jae Hyung Jung 95 Jan 03, 2023