OoD Minimum Anomaly Score GAN - Code for the Paper 'OMASGAN: Out-of-Distribution Minimum Anomaly Score GAN for Sample Generation on the Boundary'

Related tags

Deep LearningOMASGAN
Overview

OMASGAN: Out-of-Distribution Minimum Anomaly Score GAN for Sample Generation on the Boundary

Out-of-Distribution Minimum Anomaly Score GAN (OMASGAN)

Code Repository for 'OMASGAN: Out-of-Distribution Minimum Anomaly Score GAN for Sample Generation on the Boundary' - GitHub-Repository

Abstract of Paper:

Deep generative models trained in an unsupervised manner encounter the serious problem of setting high likelihood, high probability density, and low reconstruction loss to Out-of-Distribution (OoD) samples. This increases the Type II errors (false negatives, misses of anomalies) and decreases the Anomaly Detection (AD) performance. Also, deep generative models for AD suffer from the rarity of anomalies problem. To address these limitations, we propose the new OoD Minimum Anomaly Score GAN (OMASGAN) model. OMASGAN addresses the rarity of anomalies problem by generating strong abnormal samples on the boundary of the support of the data distribution, using data only from the normal class. OMASGAN improves the AD performance by retraining including the abnormal minimum-anomaly-score OoD samples generated by our negative sampling augmentation methodology. OMASGAN uses any f-divergence distribution metric in its variational representation, and explicit likelihood and invertibility are not needed. The proposed AD model uses a discriminator for inference and the evaluation of OMASGAN on image data using the leave-one-out methodology shows that it achieves an improvement of at least 0.24 and 0.07 points in AUROC on average on MNIST and CIFAR-10 data, respectively, over recently proposed state-of-the-art AD benchmarks.

Flowchart Diagram:

plot

Figure 1: Flowchart of the OMASGAN model for AD which generates minimum-anomaly-score OoD samples on the boundary of the support of the data distribution and subsequently uses these generated boundary samples to train a discriminative model to detect abnormal OoD samples.

plot

Figure 2: Diagram of the training of the OMASGAN model for AD in images using active negative sampling and training by generating strong abnormal OoD samples on the boundary of the data distribution.

Discussion about the Model:

plot

Figure 3: Illustration of the OMASGAN algorithm for AD where x~px, G(z)~pg, and G'(z)~pg'. The figure shows the OMASGAN Tasks and the data distribution, px, the data model distribution, pg, the data model distribution after retraining, pg', and the samples from the boundary of the support of the data distribution, B(z)~pb.

To address the problem of deep generative models knowing what they do not know (Nalisnick et al., 2019), the proposed OMASGAN algorithm performs (iterative) retraining of generative models and GANs for AD and works with anomaly scores rather than with likelihood and probability density. Because it works with anomaly scores instead of probability, the OMASGAN algorithm avoids invertibility and works with GANs, implicit distributions, and f-divergence distribution metrics expressed in their variational representation. The model proposed in (Zaheer et al., 2020) uses old points to perform model retraining for AD, but these old points are chosen in an ad hoc way, do not cover the OoD part of the data space, and are very limited in supply. On the contrary, the proposed OMASGAN model generates any desired number of well scattered OoD points on the boundary of the data distribution for model retraining for AD. OMASGAN first produces minimum anomaly score OoD samples around the data, B(z)~pb, by using a decreasing function of a distribution metric between the boundary samples and the data and then retrains by including the generated OoD B(z) samples. The generated OoD minimum anomaly score B(z) samples lead to a generally looser definition of the boundary of the support of the data distribution and form a surface in the high-dimensional space, i.e. manifold. Abnormal OoD samples that lie far away from the boundary of the data distribution are created by the AD models proposed in (Pourreza et al., 2021) and (Bian et al., 2019).

OMASGAN performs automatic negative data augmentation and model retraining for AD by combining negative and positive training and by eliminating the need for feature extraction, human intervention, dataset-dependent heuristic techniques, and ad hoc methods because they do not scale. This strengthens the applicability and generalization of our AD model. The negative data augmentation strategy introduced in (Sinha et al., 2021) does not scale because it relies on feature extraction, feature engineering, rotating features, and human intervention. We note that one of the aims of deep learning is to eliminate feature engineering and feature extraction. The methodology proposed in (Sinha et al., 2021) is dataset-dependent and uses a restrictive and limiting definition of anomaly, creating OoD samples in an ad hoc way and not covering the OoD part of the data space. Starting from the data, D, OMASGAN generates the negative data, D’. As a next step, it learns the data and avoids D’. This is the proposed self-supervised learning methodology to perform retraining by including negative samples. This differs from (1) using single-epoch blurry reconstructions as OoD samples (Zaheer et al., 2020; Pourreza et al., 2021), (2) rotating features and using Jigsaw images as anomalies (Sinha et al, 2021), and (3) using a Conditional VAE to move away from the mean in the latent space to produce OoD abnormal points (Bian et al., 2019). There is an increasing number of methods headed in the same direction, as described in (1), (2), and (3), and the proposed OMASGAN methodology outperforms the AD benchmarks in terms of applicability, generality, and generalization.

Usage:

For the evaluation of the proposed OMASGAN model for AD, we use the leave-one-out (LOO) evaluation methodology and the image data sets MNIST and CIFAR-10. We repeat for every abnormal leave-out class and compute the average AD performance of OMASGAN over the abnormal leave-out classes. We also use synthetic data for the evaluation of the OMASGAN model and all the evaluation results can be found in our paper "OMASGAN: Out-of-Distribution Minimum Anomaly Score GAN for Sample Generation on the Boundary" (Author, 2021).

The paper 'OMASGAN: Out-of-Distribution Minimum Anomaly Score GAN for Sample Generation on the Boundary' in Section 5.1 and in Figure 3 presents the evaluation of the proposed OMASGAN model on synthetic data for a multimodal distribution with disconnected components for px. Our evaluation results are presented in the folder OMASGAN-Synthetic-Data. The Toy Data Simulation Experiment folder, which is within the Simulations Experiments folder, includes figures and simulation results for OMASGAN evaluated on synthetic data. For multimodal distributions with disjoint/disconnected components for px, for two-dimensional synthetic data, the OMASGAN model successfully forms and generates the boundary of the support of the data distribution in OMASGAN-Task2, Task2-Boundary, Boundary-Formation, Support-Boundary, and OMASGAN-AUROC.

Simulations Experiments folder: The Optimization Tasks of OMASGAN, including the Boundary Task and the Retraining Task, are in the Simulations Experiments folder. In the boundary algorithm (Task 2), the boundary model is trained to perform sample generation on the boundary of the data distribution by starting from within the data distribution (Task 1). In the retraining function (Task 3), as shown in the flowchart diagram in Figure 1, OMASGAN performs model retraining for AD by including negative samples, where the negative OoD samples are generated by the proposed negative data augmentation methodology. Regarding our negative data augmentation methodology, OMASGAN generates minimum anomaly score OoD samples around the data using a strictly decreasing function of a distribution metric between the boundary samples and the data. For the Boundary and Retraining Tasks, according to Table 4 of the f-GAN paper, we use the Pearson Chi-Squared f-divergence distribution metric and we note that after Pearson Chi-Squared, the next best metrics are KL and Jensen-Shannon (Nowozin et al., 2016).

For synthetic data, example usage:

cd ./Simulations_Experiments/Toy_Data_Simulation_Experiment/
python train_Toy_Data_fGAN_Simulation_Experiment.py

MNIST and CIFAR-10 Usage:

For the evaluation of OMASGAN, we use synthetic data, MNIST, CIFAR-10, Fashion-MNIST, KMNIST, and SVHN. For the evaluation of OMASGAN for AD on MNIST image data, we obtain MNIST-Task3 and for the evaluation of the OMASGAN model on CIFAR-10 data, we obtain CIFAR10-Task3. Our AD evaluation results are presented in OMASGAN-AUROC and in the file OMASGAN-Results. The paper 'OMASGAN: Out-of-Distribution Minimum Anomaly Score GAN for Sample Generation on the Boundary' in Sections 5.2-5.5 and in Figures 4-11 presents the evaluation of OMASGAN on image data from the MNIST and CIFAR-10 datasets. OMASGAN retrains by including the generated samples on the boundary and we note that in the paper “OMASGAN: Out-of-Distribution Minimum Anomaly Score GAN for Sample Generation on the Boundary”, in our ablation study on MNIST and CIFAR-10 data, the examined baseline is the model without retraining. OMASGAN uses the generated boundary samples for model retraining for AD by including them as negative samples. Our boundary samples are generated without using likelihood, probability density, and invertibility unlike the models proposed in (Bhatia et al., 2021) and (Dionelis et al., 2020). Model retraining for AD by including negative samples uses strong and specifically adversarial anomalies. Strong anomalies are close to the boundary of the support of the data distribution and, according to our definition, strong anomalies subsume adversarial anomalies as a special case. Adversarial anomalies are anomalies close to high-probability normal sample. A small perturbation makes adversarial anomalies cross the boundary of the data distribution to become high-probability normal points. In the reverse scenario, a small perturbation can make some high-probability samples cross the boundary of the data distribution to become adversarial anomalies. Anomalies can be close to high-probability normal samples because data usually reside in low-dimensional manifolds.

To run the f-GAN-based OMASGAN model using the LOO methodology on MNIST data, for the abnormal class "abnormal_class_LOO" (train_Task1_fGAN_Simulation_Experiment.py), run the bash script:

cd ./Experiments/
sh run_OMASGAN_fGAN_MNIST.sh

Example usage: Run from the Terminal:

cd ./Simulations_Experiments/
python train_Task1_fGAN_Simulation_Experiment.py
#python -m train_Task1_fGAN_Simulation_Experiment
python Task1_MNIST_fGAN_Simulation_Experiment.py
python Task1_MNIST2_fGAN_Simulation_Experiment.py

Also, example usage:

cd ./Simulations_Experiments/Task1_CIFAR10_MNIST_KLWGAN_Simulation_Experiment/
python train_Task1_KLWGAN_Simulation_Experiment.py --select_dataset cifar10 --abnormal_class 0 --shuffle --batch_size 64 --parallel --num_G_accumulations 1 --num_D_accumulations 1 --num_epochs 500 --num_D_steps 4 --G_lr 2e-4 --D_lr 2e-4 --dataset C10 --data_root ./data/ --G_ortho 0.0 --G_attn 0 --D_attn 0 --G_init N02 --D_init N02 --ema --use_ema --ema_start 1000 --start_eval 50 --test_every 5000 --save_every 2000 --num_best_copies 5 --num_save_copies 2 --loss_type kl_5 --seed 2 --which_best FID --model BigGAN --experiment_name C10Ukl5
#python train_Task1_KLWGAN_Simulation_Experiment.py --select_dataset mnist --abnormal_class 0 --shuffle --batch_size 64 --parallel --num_G_accumulations 1 --num_D_accumulations 1 --num_epochs 500 --num_D_steps 4 --G_lr 2e-4 --D_lr 2e-4 --dataset C10 --data_root ./data/ --G_ortho 0.0 --G_attn 0 --D_attn 0 --G_init N02 --D_init N02 --ema --use_ema --ema_start 1000 --start_eval 50 --test_every 5000 --save_every 2000 --num_best_copies 5 --num_save_copies 2 --loss_type kl_5 --seed 2 --which_best FID --model BigGAN --experiment_name C10Ukl5

The use of torch.nn.DataParallel(model) is recommended along with the use of torch.save(model.module.state_dict(), "./.pt") instead of torch.save(model.state_dict(), "./.pt"). Also, saving the best trained model is recommended by using "best_loss = float('inf')" and "if loss.item()<best_loss: best_loss=loss.item(); torch.save(model.module.state_dict(), "./.pt")". Using a scheduler, i.e. “scheduler = optim.lr_scheduler.MultiStepLR(optimizer_gen, milestones=50, gamma=0.1)”, “scheduler.step()”, and “float(scheduler.get_lr()[0])”, is also recommended. Also, downloading the image dataset one time is recommended, e.g. "--data_root ../<path-to-folder-of-dataset>/data/".

After saving the trained model from Task 1: Example usage:

cd ./Simulations_Experiments/
python train_Task2_fGAN_Simulation_Experiment.py

Also, example usage:

cd ./Simulations_Experiments/Task2_CIFAR_MNIST_KLWGAN_Simulation_Experiment/
python train.py --select_dataset cifar10 --abnormal_class 0 --shuffle --batch_size 64 --parallel --num_G_accumulations 1 --num_D_accumulations 1 --num_epochs 500 --num_D_steps 4 --G_lr 2e-4 --D_lr 2e-4 --dataset C10 --data_root ./data/ --G_ortho 0.0 --G_attn 0 --D_attn 0 --G_init N02 --D_init N02 --ema --use_ema --ema_start 1000 --start_eval 50 --test_every 5000 --save_every 2000 --num_best_copies 5 --num_save_copies 2 --loss_type kl_5 --seed 2 --which_best FID --model BigGAN --experiment_name C10Ukl5
#python train.py --select_dataset mnist --abnormal_class 0 --shuffle --batch_size 64 --parallel --num_G_accumulations 1 --num_D_accumulations 1 --num_epochs 500 --num_D_steps 4 --G_lr 2e-4 --D_lr 2e-4 --dataset C10 --data_root ./data/ --G_ortho 0.0 --G_attn 0 --D_attn 0 --G_init N02 --D_init N02 --ema --use_ema --ema_start 1000 --start_eval 50 --test_every 5000 --save_every 2000 --num_best_copies 5 --num_save_copies 2 --loss_type kl_5 --seed 2 --which_best FID --model BigGAN --experiment_name C10Ukl5

Then, after saving the trained models from Tasks 1 and 2: Example usage:

cd ./Simulations_Experiments/
python train_Task3_fGAN_Simulation_Experiment.py

Example usage:

cd ./Simulations_Experiments/Task3_CIFAR_MNIST_KLWGAN_Simulation_Experiment/
python train.py --select_dataset cifar10 --abnormal_class 0 --shuffle --batch_size 64 --parallel --num_G_accumulations 1 --num_D_accumulations 1 --num_epochs 500 --num_D_steps 4 --G_lr 2e-4 --D_lr 2e-4 --dataset C10 --data_root ./data/ --G_ortho 0.0 --G_attn 0 --D_attn 0 --G_init N02 --D_init N02 --ema --use_ema --ema_start 1000 --start_eval 50 --test_every 5000 --save_every 2000 --num_best_copies 5 --num_save_copies 2 --loss_type kl_5 --seed 2 --which_best FID --model BigGAN --experiment_name C10Ukl5
#python train.py --select_dataset mnist --abnormal_class 0 --shuffle --batch_size 64 --parallel --num_G_accumulations 1 --num_D_accumulations 1 --num_epochs 500 --num_D_steps 4 --G_lr 2e-4 --D_lr 2e-4 --dataset C10 --data_root ./data/ --G_ortho 0.0 --G_attn 0 --D_attn 0 --G_init N02 --D_init N02 --ema --use_ema --ema_start 1000 --start_eval 50 --test_every 5000 --save_every 2000 --num_best_copies 5 --num_save_copies 2 --loss_type kl_5 --seed 2 --which_best FID --model BigGAN --experiment_name C10Ukl5

Next, after saving the trained models from Tasks 1, 2, and 3: Example usage:

cd ./Simulations_Experiments/
python train_Task3_J_fGAN_Simulation_Experiment.py

Also, example usage: Run from the Terminal:

cd ./Simulations_Experiments/Task3_J_CIFAR_MNIST_KLWGAN_Simulation_Experiment/
python train.py --select_dataset cifar10 --abnormal_class 0 --shuffle --batch_size 64 --parallel --num_G_accumulations 1 --num_D_accumulations 1 --num_epochs 500 --num_D_steps 4 --G_lr 2e-4 --D_lr 2e-4 --dataset C10 --data_root ./data/ --G_ortho 0.0 --G_attn 0 --D_attn 0 --G_init N02 --D_init N02 --ema --use_ema --ema_start 1000 --start_eval 50 --test_every 5000 --save_every 2000 --num_best_copies 5 --num_save_copies 2 --loss_type kl_5 --seed 2 --which_best FID --model BigGAN --experiment_name C10Ukl5
#python train.py --select_dataset mnist --abnormal_class 0 --shuffle --batch_size 64 --parallel --num_G_accumulations 1 --num_D_accumulations 1 --num_epochs 500 --num_D_steps 4 --G_lr 2e-4 --D_lr 2e-4 --dataset C10 --data_root ./data/ --G_ortho 0.0 --G_attn 0 --D_attn 0 --G_init N02 --D_init N02 --ema --use_ema --ema_start 1000 --start_eval 50 --test_every 5000 --save_every 2000 --num_best_copies 5 --num_save_copies 2 --loss_type kl_5 --seed 2 --which_best FID --model BigGAN --experiment_name C10Ukl5

To run the KLWGAN-based OMASGAN model using the LOO methodology on CIFAR-10 data, run the bash script:

cd ./Experiments/
sh run_OMASGAN_KLWGAN_CIFAR.sh

Also, to run the KLWGAN-based OMASGAN using the LOO methodology on MNIST image data, run the following bash script from the Terminal:

cd ./Experiments/
sh run_OMASGAN_KLWGAN_MNIST.sh

Further Usage Information:

This Code Repository contains a PyTorch implementation for the OMASGAN model. To run the code, we use a virtual environment and conda. For the versions of the libraries we use, see the requirements.txt file which has been created by using "pip freeze > requirements.txt". For installing the versions of the Python libraries we use, run "pip install -r requirements.txt" from the Terminal.

To clone the Code Repository, run:

git clone https://github.com/Anonymous-Author-2021/OMASGAN.git
conda create -n OMASGAN python=3.7
conda info --envs
conda activate OMASGAN
pip install --user --requirement requirements.txt

Environments - Requirements: Python 3.7 and PyTorch 1.2 (requirements.txt)

This website is best viewed in Chrome or Firefox.

Acknowledgements:

Thanks to the repositories: PyTorch-Template, Generative Models, f-GAN, and KLWGAN.

Acknowledgement: Thanks to the repositories: f-GAN, GANs, Boundary-GAN, fGAN, and Rumi-GAN.

Also, thanks to the repositories: Negative-Data-Augmentation, Negative-Data-Augmentation-Paper, and BigGAN.

Additional acknowledgement: Thanks to the repositories: Pearson-Chi-Squared, ExGAN, Extreme-Samples-GAN, Teaching-GANs-What-Not-To-Learn, DeepSAD, and GANomaly.

All the acknowledgements, references, and citations can be found in the paper "OMASGAN: Out-of-Distribution Minimum Anomaly Score GAN for Sample Generation on the Boundary".

References:

Asokan, S. and Seelamantula, C., “Teaching a GAN What Not to Learn,” in Proceedings 34th Conference on Neural Information Processing Systems (NeurIPS 2020), Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., and Lin, H. (eds), Vancouver, Canada, December 2020.

Author, “OMASGAN: Out-of-Distribution Minimum Anomaly Score GAN for Sample Generation on the Boundary,” Submitted to International Conference on Machine Learning (ICML), 2021.

Bhatia, S., Jain, A., and Hooi, B., “ExGAN: Adversarial Generation of Extreme Samples,” in Proceedings 35th Association for the Advancement of Artificial Intelligence (AAAI) Conference on Artificial Intelligence, AAAI-2050, Virtual Conference, February 2021.

Bian, J., Hui, X., Sun, S., Zhao, X., and Tan, M., “A Novel and Efficient CVAE-GAN-Based Approach With Informative Manifold for Semi-Supervised Anomaly Detection,” in IEEE Access, vol. 7, pp. 88903-88916, June 2019. DOI: 10.1109/ACCESS.2019.2920251

Brock, A., Donahue, J., and Simonyan, K., “Large Scale GAN Training for High Fidelity Natural Image Synthesis,” in Proceedings Seventh International Conference on Learning Representations (ICLR), New Orleans, Louisiana, USA, May 2019.

Dionelis, N., Yaghoobi, M., and Tsaftaris, S., “Boundary of Distribution Support Generator (BDSG): Sample Generation on the Boundary,” in Proceedings IEEE International Conference on Image Processing (ICIP), pp. 803-807, October 2020. DOI: 10.1109/ICIP40778.2020.9191341

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y., “Generative Adversarial Nets,” in Proceedings Advances in Neural Information Processing Systems (NIPS), pp. 2672–2680, Montréal, Canada, December 2014.

Nalisnick, E., Matsukawa, A., Teh, Y., Gorur, D., and Lakshminarayanan, B., “Do Deep Generative Models Know What They Don’t Know?,” in Proceedings International Conference on Learning Representations (ICLR), New Orleans, USA, May 2019.

Nowozin, S., Cseke, B., and Tomioka, R., “f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization,” in Proceedings Thirtieth Conference on Neural Information Processing Systems (NIPS), Barcelona, Spain, December 2016.

Pourreza, M., Mohammadi, B., Khaki, M., Bouindour, S., Snoussi, H., and Sabokrou, M., “G2D: Generate to Detect Anomaly,” in Proceedings IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), pp. 2003-2012, January 2021.

Sabokrou, M., Khalooei, M., Fathy, M., and Adeli, E., “Adversarially Learned One-Class Classifier for Novelty Detection,” in Proceedings IEEE/CVF Conference Computer Vision and Pattern Recognition (CVPR), pp. 3379-3388, Salt Lake City, UT, USA, June 2018. DOI: 10.1109/CVPR.2018.00356

Sinha, A., Ayush, K., Song, J., Uzkent, B., Jin, H., and Ermon, S., “Negative Data Augmentation,” in Proceedings International Conference on Learning Representations (ICLR), May 2021.

Song, J. and Ermon, S., “Bridging the Gap Between f-GANs and Wasserstein GANs,” in Proceedings International Conference on Machine Learning (ICML), pp. 9078-9087, vol. 119, Daumé III, H. and Singh, A. (eds), July 2020.

Zaheer, M., Lee, J., Astrid, M., and Lee, S., “Old is Gold: Redefining the Adversarially Learned One-Class Classifier Training Paradigm,” in Proceedings IEEE/CVF Conference Computer Vision and Pattern Recognition (CVPR), pp. 14171-14181, Seattle, Washington, USA, June 2020. DOI: 10.1109/CVPR42600.2020.01419

Revisiting Weakly Supervised Pre-Training of Visual Perception Models

SWAG: Supervised Weakly from hashtAGs This repository contains SWAG models from the paper Revisiting Weakly Supervised Pre-Training of Visual Percepti

Meta Research 134 Jan 05, 2023
learned_optimization: Training and evaluating learned optimizers in JAX

learned_optimization: Training and evaluating learned optimizers in JAX learned_optimization is a research codebase for training learned optimizers. I

Google 533 Dec 30, 2022
Project page of the paper 'Analyzing Perception-Distortion Tradeoff using Enhanced Perceptual Super-resolution Network' (ECCVW 2018)

EPSR (Enhanced Perceptual Super-resolution Network) paper This repo provides the test code, pretrained models, and results on benchmark datasets of ou

Subeesh Vasu 78 Nov 19, 2022
Training Structured Neural Networks Through Manifold Identification and Variance Reduction

Training Structured Neural Networks Through Manifold Identification and Variance Reduction This repository is a pytorch implementation of the Regulari

0 Dec 23, 2021
Deep generative models of 3D grids for structure-based drug discovery

What is liGAN? liGAN is a research codebase for training and evaluating deep generative models for de novo drug design based on 3D atomic density grid

Matt Ragoza 152 Jan 03, 2023
This repo holds the code of TransFuse: Fusing Transformers and CNNs for Medical Image Segmentation

TransFuse This repo holds the code of TransFuse: Fusing Transformers and CNNs for Medical Image Segmentation Requirements Pytorch=1.6.0, 1.9.0 (=1.

Rayicer 93 Dec 19, 2022
Implementation of a protein autoregressive language model, but with autoregressive infilling objective (editing subsequences capability)

Protein GLM (wip) Implementation of a protein autoregressive language model, but with autoregressive infilling objective (editing subsequences capabil

Phil Wang 17 May 06, 2022
ICNet for Real-Time Semantic Segmentation on High-Resolution Images, ECCV2018

ICNet for Real-Time Semantic Segmentation on High-Resolution Images by Hengshuang Zhao, Xiaojuan Qi, Xiaoyong Shen, Jianping Shi, Jiaya Jia, details a

Hengshuang Zhao 594 Dec 31, 2022
YOLOv5🚀 reproduction by Guo Quanhao using PaddlePaddle

YOLOv5-Paddle YOLOv5 🚀 reproduction by Guo Quanhao using PaddlePaddle 支持AutoBatch 支持AutoAnchor 支持GPU Memory 快速开始 使用AIStudio高性能环境快速构建YOLOv5训练(PaddlePa

QuanHao Guo 20 Nov 14, 2022
ArtEmis: Affective Language for Art

ArtEmis: Affective Language for Art Created by Panos Achlioptas, Maks Ovsjanikov, Kilichbek Haydarov, Mohamed Elhoseiny, Leonidas J. Guibas Introducti

Panos 268 Dec 12, 2022
A simple image/video to Desmos graph converter run locally

Desmos Bezier Renderer A simple image/video to Desmos graph converter run locally Sample Result Setup Install dependencies apt update apt install git

Kevin JY Cui 339 Dec 23, 2022
Code for the paper "Regularizing Variational Autoencoder with Diversity and Uncertainty Awareness"

DU-VAE This is the pytorch implementation of the paper "Regularizing Variational Autoencoder with Diversity and Uncertainty Awareness" Acknowledgement

Dazhong Shen 4 Oct 19, 2022
Robot Servers and Server Manager software for robo-gym

robo-gym-server-modules Robot Servers and Server Manager software for robo-gym. For info on how to use this package please visit the robo-gym website

JR ROBOTICS 4 Aug 16, 2021
Language-Agnostic Website Embedding and Classification

Homepage2Vec Language-Agnostic Website Embedding and Classification based on Curlie labels https://arxiv.org/pdf/2201.03677.pdf Homepage2Vec is a pre-

25 Dec 27, 2022
The sixth place winning solution (6/220) in 2021 Gaofen Challenge.

SwinTransformer + OBBDet The sixth place winning solution (6/220) in the track of Fine-grained Object Recognition in High-Resolution Optical Images, 2

ming71 46 Dec 02, 2022
This package contains deep learning models and related scripts for RoseTTAFold

RoseTTAFold This package contains deep learning models and related scripts to run RoseTTAFold This repository is the official implementation of RoseTT

1.6k Jan 03, 2023
Simple reference implementation of GraphSAGE.

Reference PyTorch GraphSAGE Implementation Author: William L. Hamilton Basic reference PyTorch implementation of GraphSAGE. This reference implementat

William L Hamilton 861 Jan 06, 2023
Just-Now - This Is Just Now Login Friendlist Cloner Tools

JUST NOW LOGIN FRIENDLIST CLONER TOOLS Install $ apt update $ apt upgrade $ apt

MAHADI HASAN AFRIDI 21 Mar 09, 2022
Official PyTorch implementation of RobustNet (CVPR 2021 Oral)

RobustNet (CVPR 2021 Oral): Official Project Webpage Codes and pretrained models will be released soon. This repository provides the official PyTorch

Sungha Choi 173 Dec 21, 2022
This repository provides data for the VAW dataset as described in the CVPR 2021 paper titled "Learning to Predict Visual Attributes in the Wild"

Visual Attributes in the Wild (VAW) This repository provides data for the VAW dataset as described in the CVPR 2021 Paper: Learning to Predict Visual

Adobe Research 36 Dec 30, 2022