A clear, concise, simple yet powerful and efficient API for deep learning.

Overview

The Gluon API Specification

The Gluon API specification is an effort to improve speed, flexibility, and accessibility of deep learning technology for all developers, regardless of their deep learning framework of choice. The Gluon API offers a flexible interface that simplifies the process of prototyping, building, and training deep learning models without sacrificing training speed. It offers four distinct advantages:

  • Simple, Easy-to-Understand Code: Gluon offers a full set of plug-and-play neural network building blocks, including predefined layers, optimizers, and initializers.
  • Flexible, Imperative Structure: Gluon does not require the neural network model to be rigidly defined, but rather brings the training algorithm and model closer together to provide flexibility in the development process.
  • Dynamic Graphs: Gluon enables developers to define neural network models that are dynamic, meaning they can be built on the fly, with any structure, and using any of Python’s native control flow.
  • High Performance: Gluon provides all of the above benefits without impacting the training speed that the underlying engine provides.

Gluon API Reference

Getting Started with the Gluon Interface

The Gluon specification has already been implemented in Apache MXNet, so you can start using the Gluon interface by following these easy steps for installing the latest master version of MXNet. We recommend using Python version 3.3 or greater and implementing this example using a Jupyter notebook. Setup of Jupyter is included in the MXNet installation instructions. For our example we’ll walk through how to build and train a simple two-layer neural network, called a multilayer perceptron.

First, import mxnet and MXNet's implementation of the gluon specification. We will also need autograd, ndarray, and numpy.

import mxnet as mx
from mxnet import gluon, autograd, ndarray
import numpy as np

Next, we use gluon.data.DataLoader, Gluon's data iterator, to hold the training and test data. Iterators are a useful object class for traversing through large datasets. We pass Gluon's DataLoader a helper, gluon.data.vision.MNIST, that will pre-process the MNIST handwriting dataset, getting into the right size and format, using parameters to tell it which is test set and which is the training set.

train_data = mx.gluon.data.DataLoader(mx.gluon.data.vision.MNIST(train=True, transform=lambda data, label: (data.astype(np.float32)/255, label)),
                                      batch_size=32, shuffle=True)
test_data = mx.gluon.data.DataLoader(mx.gluon.data.vision.MNIST(train=False, transform=lambda data, label: (data.astype(np.float32)/255, label)),
                                     batch_size=32, shuffle=False)                     

Now, we are ready to define the actual neural network, and we can do so in five simple lines of code. First, we initialize the network with net = gluon.nn.Sequential(). Then, with that net, we create three layers using gluon.nn.Dense: the first will have 128 nodes, and the second will have 64 nodes. They both incorporate the relu by passing that into the activation function parameter. The final layer for our model, gluon.nn.Dense(10), is used to set up the output layer with the number of nodes corresponding to the total number of possible outputs. In our case with MNIST, there are only 10 possible outputs because the pictures represent numerical digits of which there are only 10 (i.e., 0 to 9).

# First step is to initialize your model
net = gluon.nn.Sequential()
# Then, define your model architecture
with net.name_scope():
    net.add(gluon.nn.Dense(128, activation="relu")) # 1st layer - 128 nodes
    net.add(gluon.nn.Dense(64, activation="relu")) # 2nd layer – 64 nodes
    net.add(gluon.nn.Dense(10)) # Output layer

Prior to kicking off the model training process, we need to initialize the model’s parameters and set up the loss with gluon.loss.SoftmaxCrossEntropyLoss() and model optimizer functions with gluon.Trainer. As with creating the model, these normally complicated functions are distilled to one line of code each.

# We start with random values for all of the model’s parameters from a
# normal distribution with a standard deviation of 0.05
net.collect_params().initialize(mx.init.Normal(sigma=0.05))

# We opt to use softmax cross entropy loss function to measure how well the # model is able to predict the correct answer
softmax_cross_entropy = gluon.loss.SoftmaxCrossEntropyLoss()

# We opt to use the stochastic gradient descent (sgd) training algorithm
# and set the learning rate hyperparameter to .1
trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': .1})

Running the training is fairly typical and all the while using Gluon's functionality to make the process simple and seamless. There are four steps: (1) pass in a batch of data; (2) calculate the difference between the output generated by the neural network model and the actual truth (i.e., the loss); (3) use Gluon's autograd to calculate the derivatives of the model’s parameters with respect to their impact on the loss; and (4) use the Gluon's trainer method to optimize the parameters in a way that will decrease the loss. We set the number of epochs at 10, meaning that we will cycle through the entire training dataset 10 times.

epochs = 10
for e in range(epochs):
    for i, (data, label) in enumerate(train_data):
        data = data.as_in_context(mx.cpu()).reshape((-1, 784))
        label = label.as_in_context(mx.cpu())
        with autograd.record(): # Start recording the derivatives
            output = net(data) # the forward iteration
            loss = softmax_cross_entropy(output, label)
            loss.backward()
        trainer.step(data.shape[0])
        # Provide stats on the improvement of the model over each epoch
        curr_loss = ndarray.mean(loss).asscalar()
    print("Epoch {}. Current Loss: {}.".format(e, curr_loss))

We now have a trained neural network model, and can see how the accuracy improves over each epoch.

A Jupyter notebook of this code has been provided for your convenience.

To learn more about the Gluon interface and deep learning, you can reference this comprehensive set of tutorials, which covers everything from an introduction to deep learning to how to implement cutting-edge neural network models.

License

Apache 2.0

Owner
Gluon API
Gluon API
Vikrant Deshpande 1 Nov 17, 2022
DeepFaceLab fork which provides IPython Notebook to use DFL with Google Colab

DFL-Colab — DeepFaceLab fork for Google Colab This project provides you IPython Notebook to use DeepFaceLab with Google Colaboratory. You can create y

779 Jan 05, 2023
Kaggle G2Net Gravitational Wave Detection : 2nd place solution

Kaggle G2Net Gravitational Wave Detection : 2nd place solution

Hiroshechka Y 33 Dec 26, 2022
Official code of paper "PGT: A Progressive Method for Training Models on Long Videos" on CVPR2021

PGT Code for paper PGT: A Progressive Method for Training Models on Long Videos. Install Run pip install -r requirements.txt. Run python setup.py buil

Bo Pang 27 Mar 30, 2022
[CVPR 2022 Oral] Balanced MSE for Imbalanced Visual Regression https://arxiv.org/abs/2203.16427

Balanced MSE Code for the paper: Balanced MSE for Imbalanced Visual Regression Jiawei Ren, Mingyuan Zhang, Cunjun Yu, Ziwei Liu CVPR 2022 (Oral) News

Jiawei Ren 267 Jan 01, 2023
Weakly Supervised Posture Mining with Reverse Cross-entropy for Fine-grained Classification

Fine-grainedImageClassification Weakly Supervised Posture Mining with Reverse Cross-entropy for Fine-grained Classification We trained model here: lin

ZhenchaoTang 14 Oct 21, 2022
Python periodic table module

elemenpy Hello! elements.py is a small Python periodic table module that is used for calling certain information about an element. Installation Instal

Eric Cheng 2 Dec 27, 2021
🏎️ Accelerate training and inference of 🤗 Transformers with easy to use hardware optimization tools

Hugging Face Optimum 🤗 Optimum is an extension of 🤗 Transformers, providing a set of performance optimization tools enabling maximum efficiency to t

Hugging Face 842 Dec 30, 2022
Self-supervised Product Quantization for Deep Unsupervised Image Retrieval - ICCV2021

Self-supervised Product Quantization for Deep Unsupervised Image Retrieval Pytorch implementation of SPQ Accepted to ICCV 2021 - paper Young Kyun Jang

Young Kyun Jang 71 Dec 27, 2022
clustering moroccan stocks time series data using k-means with dtw (dynamic time warping)

Moroccan Stocks Clustering Context Hey! we don't always have to forecast time series am I right ? We use k-means to cluster about 70 moroccan stock pr

Ayman Lafaz 7 Oct 18, 2022
Attention-based CNN-LSTM and XGBoost hybrid model for stock prediction

Attention-based CNN-LSTM and XGBoost hybrid model for stock prediction Requirements The code has been tested running under Python 3.7.4, with the foll

zshicode 84 Jan 01, 2023
Official Repsoitory for "Mish: A Self Regularized Non-Monotonic Neural Activation Function" [BMVC 2020]

Mish: Self Regularized Non-Monotonic Activation Function BMVC 2020 (Official Paper) Notes: (Click to expand) A considerably faster version based on CU

Xa9aX ツ 1.2k Dec 29, 2022
Manipulation OpenAI Gym environments to simulate robots at the STARS lab

Manipulator Learning This repository contains a set of manipulation environments that are compatible with OpenAI Gym and simulated in pybullet. In par

STARS Laboratory 5 Dec 08, 2022
This repository provides a basic implementation of our GCPR 2021 paper "Learning Conditional Invariance through Cycle Consistency"

Learning Conditional Invariance through Cycle Consistency This repository provides a basic TensorFlow 1 implementation of the proposed model in our GC

BMDA - University of Basel 1 Nov 04, 2022
Pytorch-3dunet - 3D U-Net model for volumetric semantic segmentation written in pytorch

pytorch-3dunet PyTorch implementation 3D U-Net and its variants: Standard 3D U-Net based on 3D U-Net: Learning Dense Volumetric Segmentation from Spar

Adrian Wolny 1.3k Dec 28, 2022
Privacy-Preserving Machine Learning (PPML) Tutorial Presented at PyConDE 2022

PPML: Machine Learning on Data you cannot see Repository for the tutorial on Privacy-Preserving Machine Learning (PPML) presented at PyConDE 2022 Abst

Valerio Maggio 10 Aug 16, 2022
Repositório criado para abrigar os notebooks com a listas de exercícios propostos pelo professor Gustavo Guanabara do canal Curso em Vídeo do YouTube durante o Curso de Python 3

Curso em Vídeo - Exercícios de Python 3 Sobre o repositório Este repositório contém os notebooks com a listas de exercícios propostos pelo professor G

João Pedro Pereira 9 Oct 15, 2022
Simulation of self-focusing of laser beams in condensed media

What is it? Program for scientific research, which allows to simulate the phenomenon of self-focusing of different laser beams (including Gaussian, ri

Evgeny Vasilyev 13 Dec 24, 2022
StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation

StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation Demo video: CVPR 2021 Oral: Single Channel Manipulation: Localized or attribu

Zongze Wu 267 Dec 30, 2022
Deconfounding Temporal Autoencoder: Estimating Treatment Effects over Time Using Noisy Proxies

Deconfounding Temporal Autoencoder (DTA) This is a repository for the paper "Deconfounding Temporal Autoencoder: Estimating Treatment Effects over Tim

Milan Kuzmanovic 3 Feb 04, 2022