A clear, concise, simple yet powerful and efficient API for deep learning.

Overview

The Gluon API Specification

The Gluon API specification is an effort to improve speed, flexibility, and accessibility of deep learning technology for all developers, regardless of their deep learning framework of choice. The Gluon API offers a flexible interface that simplifies the process of prototyping, building, and training deep learning models without sacrificing training speed. It offers four distinct advantages:

  • Simple, Easy-to-Understand Code: Gluon offers a full set of plug-and-play neural network building blocks, including predefined layers, optimizers, and initializers.
  • Flexible, Imperative Structure: Gluon does not require the neural network model to be rigidly defined, but rather brings the training algorithm and model closer together to provide flexibility in the development process.
  • Dynamic Graphs: Gluon enables developers to define neural network models that are dynamic, meaning they can be built on the fly, with any structure, and using any of Python’s native control flow.
  • High Performance: Gluon provides all of the above benefits without impacting the training speed that the underlying engine provides.

Gluon API Reference

Getting Started with the Gluon Interface

The Gluon specification has already been implemented in Apache MXNet, so you can start using the Gluon interface by following these easy steps for installing the latest master version of MXNet. We recommend using Python version 3.3 or greater and implementing this example using a Jupyter notebook. Setup of Jupyter is included in the MXNet installation instructions. For our example we’ll walk through how to build and train a simple two-layer neural network, called a multilayer perceptron.

First, import mxnet and MXNet's implementation of the gluon specification. We will also need autograd, ndarray, and numpy.

import mxnet as mx
from mxnet import gluon, autograd, ndarray
import numpy as np

Next, we use gluon.data.DataLoader, Gluon's data iterator, to hold the training and test data. Iterators are a useful object class for traversing through large datasets. We pass Gluon's DataLoader a helper, gluon.data.vision.MNIST, that will pre-process the MNIST handwriting dataset, getting into the right size and format, using parameters to tell it which is test set and which is the training set.

train_data = mx.gluon.data.DataLoader(mx.gluon.data.vision.MNIST(train=True, transform=lambda data, label: (data.astype(np.float32)/255, label)),
                                      batch_size=32, shuffle=True)
test_data = mx.gluon.data.DataLoader(mx.gluon.data.vision.MNIST(train=False, transform=lambda data, label: (data.astype(np.float32)/255, label)),
                                     batch_size=32, shuffle=False)                     

Now, we are ready to define the actual neural network, and we can do so in five simple lines of code. First, we initialize the network with net = gluon.nn.Sequential(). Then, with that net, we create three layers using gluon.nn.Dense: the first will have 128 nodes, and the second will have 64 nodes. They both incorporate the relu by passing that into the activation function parameter. The final layer for our model, gluon.nn.Dense(10), is used to set up the output layer with the number of nodes corresponding to the total number of possible outputs. In our case with MNIST, there are only 10 possible outputs because the pictures represent numerical digits of which there are only 10 (i.e., 0 to 9).

# First step is to initialize your model
net = gluon.nn.Sequential()
# Then, define your model architecture
with net.name_scope():
    net.add(gluon.nn.Dense(128, activation="relu")) # 1st layer - 128 nodes
    net.add(gluon.nn.Dense(64, activation="relu")) # 2nd layer – 64 nodes
    net.add(gluon.nn.Dense(10)) # Output layer

Prior to kicking off the model training process, we need to initialize the model’s parameters and set up the loss with gluon.loss.SoftmaxCrossEntropyLoss() and model optimizer functions with gluon.Trainer. As with creating the model, these normally complicated functions are distilled to one line of code each.

# We start with random values for all of the model’s parameters from a
# normal distribution with a standard deviation of 0.05
net.collect_params().initialize(mx.init.Normal(sigma=0.05))

# We opt to use softmax cross entropy loss function to measure how well the # model is able to predict the correct answer
softmax_cross_entropy = gluon.loss.SoftmaxCrossEntropyLoss()

# We opt to use the stochastic gradient descent (sgd) training algorithm
# and set the learning rate hyperparameter to .1
trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': .1})

Running the training is fairly typical and all the while using Gluon's functionality to make the process simple and seamless. There are four steps: (1) pass in a batch of data; (2) calculate the difference between the output generated by the neural network model and the actual truth (i.e., the loss); (3) use Gluon's autograd to calculate the derivatives of the model’s parameters with respect to their impact on the loss; and (4) use the Gluon's trainer method to optimize the parameters in a way that will decrease the loss. We set the number of epochs at 10, meaning that we will cycle through the entire training dataset 10 times.

epochs = 10
for e in range(epochs):
    for i, (data, label) in enumerate(train_data):
        data = data.as_in_context(mx.cpu()).reshape((-1, 784))
        label = label.as_in_context(mx.cpu())
        with autograd.record(): # Start recording the derivatives
            output = net(data) # the forward iteration
            loss = softmax_cross_entropy(output, label)
            loss.backward()
        trainer.step(data.shape[0])
        # Provide stats on the improvement of the model over each epoch
        curr_loss = ndarray.mean(loss).asscalar()
    print("Epoch {}. Current Loss: {}.".format(e, curr_loss))

We now have a trained neural network model, and can see how the accuracy improves over each epoch.

A Jupyter notebook of this code has been provided for your convenience.

To learn more about the Gluon interface and deep learning, you can reference this comprehensive set of tutorials, which covers everything from an introduction to deep learning to how to implement cutting-edge neural network models.

License

Apache 2.0

Owner
Gluon API
Gluon API
SVG Icon processing tool for C++

BAWR This is a tool to automate the icons generation from sets of svg files into fonts and atlases. The main purpose of this tool is to add it to the

Frank David Martínez M 66 Dec 14, 2022
Alfred-Restore-Iterm-Arrangement - An Alfred workflow to restore iTerm2 window Arrangements

Alfred-Restore-Iterm-Arrangement This alfred workflow will list avaliable iTerm2

7 May 10, 2022
:fire: 2D and 3D Face alignment library build using pytorch

Face Recognition Detect facial landmarks from Python using the world's most accurate face alignment network, capable of detecting points in both 2D an

Adrian Bulat 6k Dec 31, 2022
code for our paper "Source Data-absent Unsupervised Domain Adaptation through Hypothesis Transfer and Labeling Transfer"

SHOT++ Code for our TPAMI submission "Source Data-absent Unsupervised Domain Adaptation through Hypothesis Transfer and Labeling Transfer" that is ext

75 Dec 16, 2022
WarpRNNT loss ported in Numba CPU/CUDA for Pytorch

RNNT loss in Pytorch - Numba JIT compiled (warprnnt_numba) Warp RNN Transducer Loss for ASR in Pytorch, ported from HawkAaron/warp-transducer and a re

Somshubra Majumdar 15 Oct 22, 2022
Learning-based agent for Google Research Football

TiKick 1.Introduction Learning-based agent for Google Research Football Code accompanying the paper "TiKick: Towards Playing Multi-agent Football Full

Tsinghua AI Research Team for Reinforcement Learning 90 Dec 26, 2022
Generative Adversarial Networks for High Energy Physics extended to a multi-layer calorimeter simulation

CaloGAN Simulating 3D High Energy Particle Showers in Multi-Layer Electromagnetic Calorimeters with Generative Adversarial Networks. This repository c

Deep Learning for HEP 101 Nov 13, 2022
An Industrial Grade Federated Learning Framework

DOC | Quick Start | 中文 FATE (Federated AI Technology Enabler) is an open-source project initiated by Webank's AI Department to provide a secure comput

Federated AI Ecosystem 4.8k Jan 09, 2023
Conditional Generative Adversarial Networks (CGAN) for Mobility Data Fusion

This code implements the paper, Kim et al. (2021). Imputing Qualitative Attributes for Trip Chains Extracted from Smart Card Data Using a Conditional Generative Adversarial Network. Transportation Re

Eui-Jin Kim 2 Feb 03, 2022
Official implementation of NeuralFusion: Online Depth Map Fusion in Latent Space

NeuralFusion This is the official implementation of NeuralFusion: Online Depth Map Fusion in Latent Space. We provide code to train the proposed pipel

53 Jan 01, 2023
Semi-Supervised Signed Clustering Graph Neural Network (and Implementation of Some Spectral Methods)

SSSNET SSSNET: Semi-Supervised Signed Network Clustering For details, please read our paper. Environment Setup Overview The project has been tested on

Yixuan He 9 Nov 24, 2022
Training and Evaluation Code for Neural Volumes

Neural Volumes This repository contains training and evaluation code for the paper Neural Volumes. The method learns a 3D volumetric representation of

Meta Research 370 Dec 08, 2022
Face-Recognition-Attendence-System - This face recognition Attendence system using Python

Face-Recognition-Attendence-System I have developed this face recognition Attend

Riya Gupta 4 May 10, 2022
Source code of "Hold me tight! Influence of discriminative features on deep network boundaries"

Hold me tight! Influence of discriminative features on deep network boundaries This is the source code to reproduce the experiments of the NeurIPS 202

EPFL LTS4 19 Dec 10, 2021
Kalidokit is a blendshape and kinematics solver for Mediapipe/Tensorflow.js face, eyes, pose, and hand tracking models

Blendshape and kinematics solver for Mediapipe/Tensorflow.js face, eyes, pose, and hand tracking models.

Rich 4.5k Jan 07, 2023
Attentional Focus Modulates Automatic Finger‑tapping Movements

"Attentional Focus Modulates Automatic Finger‑tapping Movements", in Scientific Reports

Xingxun Jiang 1 Dec 02, 2021
Final term project for Bayesian Machine Learning Lecture (XAI-623)

Mixquality_AL Final Term Project For Bayesian Machine Learning Lecture (XAI-623) Youtube Link The presentation is given in YoutubeLink Problem Formula

JeongEun Park 3 Jan 18, 2022
DIT is a DTLS MitM proxy implemented in Python 3. It can intercept, manipulate and suppress datagrams between two DTLS endpoints and supports psk-based and certificate-based authentication schemes (RSA + ECC).

DIT - DTLS Interception Tool DIT is a MitM proxy tool to intercept DTLS traffic. It can intercept, manipulate and/or suppress DTLS datagrams between t

52 Nov 30, 2022
Efficient Householder transformation in PyTorch

Efficient Householder Transformation in PyTorch This repository implements the Householder transformation algorithm for calculating orthogonal matrice

Anton Obukhov 49 Nov 20, 2022
SuMa++: Efficient LiDAR-based Semantic SLAM (Chen et al IROS 2019)

SuMa++: Efficient LiDAR-based Semantic SLAM This repository contains the implementation of SuMa++, which generates semantic maps only using three-dime

Photogrammetry & Robotics Bonn 701 Dec 30, 2022