A clear, concise, simple yet powerful and efficient API for deep learning.

Overview

The Gluon API Specification

The Gluon API specification is an effort to improve speed, flexibility, and accessibility of deep learning technology for all developers, regardless of their deep learning framework of choice. The Gluon API offers a flexible interface that simplifies the process of prototyping, building, and training deep learning models without sacrificing training speed. It offers four distinct advantages:

  • Simple, Easy-to-Understand Code: Gluon offers a full set of plug-and-play neural network building blocks, including predefined layers, optimizers, and initializers.
  • Flexible, Imperative Structure: Gluon does not require the neural network model to be rigidly defined, but rather brings the training algorithm and model closer together to provide flexibility in the development process.
  • Dynamic Graphs: Gluon enables developers to define neural network models that are dynamic, meaning they can be built on the fly, with any structure, and using any of Python’s native control flow.
  • High Performance: Gluon provides all of the above benefits without impacting the training speed that the underlying engine provides.

Gluon API Reference

Getting Started with the Gluon Interface

The Gluon specification has already been implemented in Apache MXNet, so you can start using the Gluon interface by following these easy steps for installing the latest master version of MXNet. We recommend using Python version 3.3 or greater and implementing this example using a Jupyter notebook. Setup of Jupyter is included in the MXNet installation instructions. For our example we’ll walk through how to build and train a simple two-layer neural network, called a multilayer perceptron.

First, import mxnet and MXNet's implementation of the gluon specification. We will also need autograd, ndarray, and numpy.

import mxnet as mx
from mxnet import gluon, autograd, ndarray
import numpy as np

Next, we use gluon.data.DataLoader, Gluon's data iterator, to hold the training and test data. Iterators are a useful object class for traversing through large datasets. We pass Gluon's DataLoader a helper, gluon.data.vision.MNIST, that will pre-process the MNIST handwriting dataset, getting into the right size and format, using parameters to tell it which is test set and which is the training set.

train_data = mx.gluon.data.DataLoader(mx.gluon.data.vision.MNIST(train=True, transform=lambda data, label: (data.astype(np.float32)/255, label)),
                                      batch_size=32, shuffle=True)
test_data = mx.gluon.data.DataLoader(mx.gluon.data.vision.MNIST(train=False, transform=lambda data, label: (data.astype(np.float32)/255, label)),
                                     batch_size=32, shuffle=False)                     

Now, we are ready to define the actual neural network, and we can do so in five simple lines of code. First, we initialize the network with net = gluon.nn.Sequential(). Then, with that net, we create three layers using gluon.nn.Dense: the first will have 128 nodes, and the second will have 64 nodes. They both incorporate the relu by passing that into the activation function parameter. The final layer for our model, gluon.nn.Dense(10), is used to set up the output layer with the number of nodes corresponding to the total number of possible outputs. In our case with MNIST, there are only 10 possible outputs because the pictures represent numerical digits of which there are only 10 (i.e., 0 to 9).

# First step is to initialize your model
net = gluon.nn.Sequential()
# Then, define your model architecture
with net.name_scope():
    net.add(gluon.nn.Dense(128, activation="relu")) # 1st layer - 128 nodes
    net.add(gluon.nn.Dense(64, activation="relu")) # 2nd layer – 64 nodes
    net.add(gluon.nn.Dense(10)) # Output layer

Prior to kicking off the model training process, we need to initialize the model’s parameters and set up the loss with gluon.loss.SoftmaxCrossEntropyLoss() and model optimizer functions with gluon.Trainer. As with creating the model, these normally complicated functions are distilled to one line of code each.

# We start with random values for all of the model’s parameters from a
# normal distribution with a standard deviation of 0.05
net.collect_params().initialize(mx.init.Normal(sigma=0.05))

# We opt to use softmax cross entropy loss function to measure how well the # model is able to predict the correct answer
softmax_cross_entropy = gluon.loss.SoftmaxCrossEntropyLoss()

# We opt to use the stochastic gradient descent (sgd) training algorithm
# and set the learning rate hyperparameter to .1
trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': .1})

Running the training is fairly typical and all the while using Gluon's functionality to make the process simple and seamless. There are four steps: (1) pass in a batch of data; (2) calculate the difference between the output generated by the neural network model and the actual truth (i.e., the loss); (3) use Gluon's autograd to calculate the derivatives of the model’s parameters with respect to their impact on the loss; and (4) use the Gluon's trainer method to optimize the parameters in a way that will decrease the loss. We set the number of epochs at 10, meaning that we will cycle through the entire training dataset 10 times.

epochs = 10
for e in range(epochs):
    for i, (data, label) in enumerate(train_data):
        data = data.as_in_context(mx.cpu()).reshape((-1, 784))
        label = label.as_in_context(mx.cpu())
        with autograd.record(): # Start recording the derivatives
            output = net(data) # the forward iteration
            loss = softmax_cross_entropy(output, label)
            loss.backward()
        trainer.step(data.shape[0])
        # Provide stats on the improvement of the model over each epoch
        curr_loss = ndarray.mean(loss).asscalar()
    print("Epoch {}. Current Loss: {}.".format(e, curr_loss))

We now have a trained neural network model, and can see how the accuracy improves over each epoch.

A Jupyter notebook of this code has been provided for your convenience.

To learn more about the Gluon interface and deep learning, you can reference this comprehensive set of tutorials, which covers everything from an introduction to deep learning to how to implement cutting-edge neural network models.

License

Apache 2.0

Owner
Gluon API
Gluon API
This application explain how we can easily integrate Deepface framework with Python Django application

deepface_suite This application explain how we can easily integrate Deepface framework with Python Django application install redis cache install requ

Mohamed Naji Aboo 3 Apr 18, 2022
Interpretable and Generalizable Person Re-Identification with Query-Adaptive Convolution and Temporal Lifting

QAConv Interpretable and Generalizable Person Re-Identification with Query-Adaptive Convolution and Temporal Lifting This PyTorch code is proposed in

Shengcai Liao 166 Dec 28, 2022
MVS2D: Efficient Multi-view Stereo via Attention-Driven 2D Convolutions

MVS2D: Efficient Multi-view Stereo via Attention-Driven 2D Convolutions Project Page | Paper If you find our work useful for your research, please con

96 Jan 04, 2023
Safe Local Motion Planning with Self-Supervised Freespace Forecasting, CVPR 2021

Safe Local Motion Planning with Self-Supervised Freespace Forecasting By Peiyun Hu, Aaron Huang, John Dolan, David Held, and Deva Ramanan Citing us Yo

Peiyun Hu 90 Dec 01, 2022
End-to-end speech secognition toolkit

End-to-end speech secognition toolkit This is an E2E ASR toolkit modified from Espnet1 (version 0.9.9). This is the official implementation of paper:

Jinchuan Tian 147 Dec 28, 2022
Face Synthetics dataset is a collection of diverse synthetic face images with ground truth labels.

The Face Synthetics dataset Face Synthetics dataset is a collection of diverse synthetic face images with ground truth labels. It was introduced in ou

Microsoft 608 Jan 02, 2023
[NeurIPS'20] Multiscale Deep Equilibrium Models

Multiscale Deep Equilibrium Models 💥 💥 💥 💥 This repo is deprecated and we will soon stop actively maintaining it, as a more up-to-date (and simple

CMU Locus Lab 221 Dec 26, 2022
Real-Time Social Distance Monitoring tool using Computer Vision

Social Distance Detector A Real-Time Social Distance Monitoring Tool Table of Contents Motivation YOLO Theory Detection Output Tech Stack Functionalit

Pranav B 13 Oct 14, 2022
Complementary Patch for Weakly Supervised Semantic Segmentation, ICCV21 (poster)

CPN (ICCV2021) This is an implementation of Complementary Patch for Weakly Supervised Semantic Segmentation, which is accepted by ICCV2021 poster. Thi

Ferenas 20 Dec 12, 2022
Code for "Causal autoregressive flows" - AISTATS, 2021

Code for "Causal Autoregressive Flow" This repository contains code to run and reproduce experiments presented in Causal Autoregressive Flows, present

Ricardo Pio Monti 35 Dec 16, 2022
All course materials for the Zero to Mastery Machine Learning and Data Science course.

Zero to Mastery Machine Learning Welcome! This repository contains all of the code, notebooks, images and other materials related to the Zero to Maste

Daniel Bourke 1.6k Jan 08, 2023
Keras + Hyperopt: A very simple wrapper for convenient hyperparameter optimization

This project is now archived. It's been fun working on it, but it's time for me to move on. Thank you for all the support and feedback over the last c

Max Pumperla 2.1k Jan 03, 2023
Official code repository of the paper Learning Associative Inference Using Fast Weight Memory by Schlag et al.

Learning Associative Inference Using Fast Weight Memory This repository contains the offical code for the paper Learning Associative Inference Using F

Imanol Schlag 18 Oct 12, 2022
💃 VALSE: A Task-Independent Benchmark for Vision and Language Models Centered on Linguistic Phenomena

💃 VALSE: A Task-Independent Benchmark for Vision and Language Models Centered on Linguistic Phenomena.

Heidelberg-NLP 17 Nov 07, 2022
The dataset and source code for our paper: "Did You Ask a Good Question? A Cross-Domain Question IntentionClassification Benchmark for Text-to-SQL"

TriageSQL The dataset and source code for our paper: "Did You Ask a Good Question? A Cross-Domain Question Intention Classification Benchmark for Text

Yusen Zhang 22 Nov 09, 2022
(CVPR2021) DANNet: A One-Stage Domain Adaptation Network for Unsupervised Nighttime Semantic Segmentation

DANNet: A One-Stage Domain Adaptation Network for Unsupervised Nighttime Semantic Segmentation CVPR2021(oral) [arxiv] Requirements python3.7 pytorch==

W-zx-Y 85 Dec 07, 2022
In this tutorial, you will perform inference across 10 well-known pre-trained object detectors and fine-tune on a custom dataset. Design and train your own object detector.

Object Detection Object detection is a computer vision task for locating instances of predefined objects in images or videos. In this tutorial, you wi

Ibrahim Sobh 62 Dec 25, 2022
Exploit Camera Raw Data for Video Super-Resolution via Hidden Markov Model Inference

RawVSR This repo contains the official codes for our paper: Exploit Camera Raw Data for Video Super-Resolution via Hidden Markov Model Inference Xiaoh

Xiaohong Liu 23 Oct 08, 2022
Realtime_Multi-Person_Pose_Estimation

Introduction Multi Person PoseEstimation By PyTorch Results Require Pytorch Installation git submodule init && git submodule update Demo Download conv

tensorboy 1.3k Jan 05, 2023
This is the official implementation of TrivialAugment and a mini-library for the application of multiple image augmentation strategies including RandAugment and TrivialAugment.

Trivial Augment This is the official implementation of TrivialAugment (https://arxiv.org/abs/2103.10158), as was used for the paper. TrivialAugment is

AutoML-Freiburg-Hannover 94 Dec 30, 2022