Using VapourSynth with super resolution models and speeding them up with TensorRT.

Overview

VSGAN-tensorrt-docker

Using image super resolution models with vapoursynth and speeding them up with TensorRT. Using NVIDIA/Torch-TensorRT combined with rlaphoenix/VSGAN. This repo makes the usage of tiling and ESRGAN models very easy. Models can be found on the wiki page. Further model architectures are planned to be added later on.

Currently working:

  • ESRGAN
  • RealESRGAN (adjust model load manually in inference.py, settings wont be adjusted automatically currently)

Usage:

# install docker, command for arch
yay -S docker nvidia-docker nvidia-container-toolkit
# Put the dockerfile in a directory and run that inside that directory
docker build -t vsgan_tensorrt:latest .
# run with a mounted folder
docker run --privileged --gpus all -it --rm -v /home/Desktop/tensorrt:/workspace/tensorrt vsgan_tensorrt:latest
# you can use it in various ways, ffmpeg example
vspipe --y4m inference.py - | ffmpeg -i pipe: example.mkv

If docker does not want to start, try this before you use docker:

# fixing docker errors
systemctl start docker
sudo chmod 666 /var/run/docker.sock

Windows is mostly similar, but the path needs to be changed slightly:

Example for C://path
docker run --privileged --gpus all -it --rm -v //c/path:/workspace/tensorrt vsgan_tensorrt:latest

If you don't want to use docker, vapoursynth install commands are here and a TensorRT example is here.

Set the input video path in inference.py and access videos with the mounted folder.

It is also possible to directly pipe the video into mpv, but you most likely wont be able to archive realtime speed. Change the mounted folder path to your own videofolder and use the mpv dockerfile instead. If you use a very efficient model, it may be possible on a very good GPU. Only tested in Manjaro.

yay -S pulseaudio

# i am not sure if it is needed, but go into pulseaudio settings and check "make pulseaudio network audio devices discoverable in the local network" and reboot

# start docker
docker run --rm -i -t \
    --network host \
    -e DISPLAY \
    -v /home/Schreibtisch/test/:/home/mpv/media \
    --ipc=host \
    --privileged \
    --gpus all \
    -e PULSE_COOKIE=/run/pulse/cookie \
    -v ~/.config/pulse/cookie:/run/pulse/cookie \
    -e PULSE_SERVER=unix:${XDG_RUNTIME_DIR}/pulse/native \
    -v ${XDG_RUNTIME_DIR}/pulse/native:${XDG_RUNTIME_DIR}/pulse/native \
    vsgan_tensorrt:latest
    
# run mpv
vspipe --y4m inference.py - | mpv -
Comments
  • Invalid data found when processing input

    Invalid data found when processing input

    Hey when i start the inference.py script this happen :

    someone can help me ?

    
    > ffmpeg version N-62110-g4d45f5acbd-static https://johnvansickle.com/ffmpeg/  Copyright (c) 2000-2022 the FFmpeg developers
    >   built with gcc 8 (Debian 8.3.0-6)
    >   configuration: --enable-gpl --enable-version3 --enable-static --disable-debug --disable-ffplay --disable-indev=sndio --disable-outdev=sndio --cc=gcc --enable-fontconfig --enable-frei0r --enable-gnutls --enable-gmp --enable-libgme --enable-gray --enable-libaom --enable-libfribidi --enable-libass --enable-libvmaf --enable-libfreetype --enable-libmp3lame --enable-libopencore-amrnb --enable-libopencore-amrwb --enable-libopenjpeg --enable-librubberband --enable-libsoxr --enable-libspeex --enable-libsrt --enable-libvorbis --enable-libopus --enable-libtheora --enable-libvidstab --enable-libvo-amrwbenc --enable-libvpx --enable-libwebp --enable-libx264 --enable-libx265 --enable-libxml2 --enable-libdav1d --enable-libxvid --enable-libzvbi --enable-libzimg
    >   libavutil      57. 26.100 / 57. 26.100
    >   libavcodec     59. 33.100 / 59. 33.100
    >   libavformat    59. 24.100 / 59. 24.100
    >   libavdevice    59.  6.100 / 59.  6.100
    >   libavfilter     8. 40.100 /  8. 40.100
    >   libswscale      6.  6.100 /  6.  6.100
    >   libswresample   4.  6.100 /  4.  6.100
    >   libpostproc    56.  5.100 / 56.  5.100
    > Information: Generating grammar tables from /usr/lib/python3.8/lib2to3/Grammar.txt
    > Information: Generating grammar tables from /usr/lib/python3.8/lib2to3/PatternGrammar.txt
    > Script evaluation failed:
    > Python exception: libtorch_cuda_cu.so: cannot open shared object file: No such file or directory
    > 
    > Traceback (most recent call last):
    >   File "src\cython\vapoursynth.pyx", line 2890, in vapoursynth._vpy_evaluate
    >   File "src\cython\vapoursynth.pyx", line 2891, in vapoursynth._vpy_evaluate
    >   File "inference.py", line 85, in <module>
    >     clip = ESRGAN_inference(clip=clip, model_path="/workspace/RealESRGAN_x4plus_anime_6B.pth", tile_x=480, tile_y=480, tile_pad=16, fp16=False, tta=False, tta_mode=1)
    >   File "/workspace/tensorrt/src/esrgan.py", line 680, in ESRGAN_inference
    >     import torch_tensorrt
    >   File "/usr/local/lib/python3.8/dist-packages/torch_tensorrt/__init__.py", line 11, in <module>
    >     from torch_tensorrt._compile import *
    >   File "/usr/local/lib/python3.8/dist-packages/torch_tensorrt/_compile.py", line 2, in <module>
    >     from torch_tensorrt import _enums
    >   File "/usr/local/lib/python3.8/dist-packages/torch_tensorrt/_enums.py", line 1, in <module>
    >     from torch_tensorrt._C import dtype, DeviceType, EngineCapability, TensorFormat
    > ImportError: libtorch_cuda_cu.so: cannot open shared object file: No such file or directory
    > 
    > pipe:: Invalid data found when processing input
    
    
    opened by NeoBurgerYT 10
  • Module not found 'scipy'

    Module not found 'scipy'

    I can't run my inference.py without getting this error message. Can someone direct me to where I can get the repo?

    File "/usr/local/lib/python3.8/dist-packages/mmedit/core/evaluation/metrics.py", line 7, in from scipy.ndimage import convolve ModuleNotFoundError: No module named 'scipy'

    pipe:: Invalid data found when processing input

    opened by terminatedkhla 8
  • Tutorial?

    Tutorial?

    Hi! This is amazing technology! I’m blown away. I’d love to contact you directly on how to use it in colab, I’m quite confused with the process. I’ve tried running it but not sure I’m running it correctly. Thanks in advance!

    opened by AIManifest 6
  • Trying On A M1 Mac

    Trying On A M1 Mac

    So I followed this tutorial https://www.youtube.com/watch?v=B134jvhO8yk&t=0s But when docker run --privileged --gpus all -it --rm -v /home/vsgan_path/:/workspace/tensorrt styler00dollar/vsgan_tensorrt:latest it just gives me an error that it doesn't find the right amd64 or somthing and I rage quit deleted it without seeing the full error. PLS HELP ME :(

    opened by Ghostkwebb 6
  • Crash when using RIFE ensemble models in vsmlrt

    Crash when using RIFE ensemble models in vsmlrt

    I get this error

    vapoursynth.Error: operator (): expects 8 input planes
    

    from this

    import vapoursynth as vs
    from vapoursynth import core
    core = vs.core
    import vsmlrt
    
    clip = core.lsmas.LWLibavSource(source=r"R:\output.mkv",cache=1, prefer_hw=1)
    clip = core.resize.Bicubic(clip, matrix_in_s="709", transfer_in_s='709', format=vs.RGBS)
    clip = vsmlrt.RIFE(clip, multi=4, model=46, backend=vsmlrt.Backend.TRT(fp16=True), tilesize=[1920,1088])
    clip = core.std.AssumeFPS(clip=clip, fpsnum=60, fpsden=1)
    clip = core.resize.Bicubic(clip, format=vs.RGB24, matrix_in_s="709")
    clip.set_output()
    
    opened by banjaminicc 4
  • Support for AITemplate?

    Support for AITemplate?

    There is something that came out recently and it's look promising in terms of performance/speed. Would it be possible to implement it for ESERGAN mode? https://github.com/facebookincubator/AITemplate

    opened by kodxana 4
  • CUDA out of Memory

    CUDA out of Memory

    System Specs: Ryzen 9 5900HX, NVidia 3070 Mobile, Arch Linux (EndeavorOS) on Kernel 5.17.2

    Whenever I try to run a model that is relying on CUDA, for example cugan, the program exits with

    Error: Failed to retrieve frame 0 with error: CUDA out of memory. Tried to allocate 148.00 MiB (GPU 0; 7.80 GiB total capacity; 5.53 GiB already allocated; 68.56 MiB free; 5.69 GiB reserved in total by PyTorch)

    and stops after having output 4 frames.

    However, TensorRT works fine for models that support it (like RealESRGAN for example).

    Edit: Running nvidia-smi while the command is executed reveals that vspipe is allocating GPU Memory, but <2 GiB of VRAM, far from the 8GiB my model has.

    opened by mmkzer0 4
  • No module named 'vsbasicvsrpp'

    No module named 'vsbasicvsrpp'

    Traceback (most recent call last): File "src\cython\vapoursynth.pyx", line 2832, in vapoursynth._vpy_evaluate File "src\cython\vapoursynth.pyx", line 2833, in vapoursynth._vpy_evaluate File "inference.py", line 12, in from vsbasicvsrpp import BasicVSRPP ModuleNotFoundError: No module named 'vsbasicvsrpp'

    opened by xt851231 4
  • Google colab request?

    Google colab request?

    I recently stumbled upon this VSGAN-tensorrt-docker and found it so incredible! Could anyone make a google colab notebook that features everything from this VSGAN-tensorrt-docker, so that we could experience the speed of TensorRT! Thanks in advance!

    opened by mikebilly 3
  • model conversion from onnx to trt

    model conversion from onnx to trt

    @styler00dollar this is not issue but a question, I read the scripts in inference.py and found real-esrgan 2x is loaded from trt engine file, since real-2x uses dynamic shapes as input, could you share any ideas how to convert this model to trt, thanks!

    opened by deism 3
  • ESRGAN with full episode

    ESRGAN with full episode

    Hello,

    I'm trying to upscale MKV files of full episodes with ESRGAN. I tried using vspipe -c y4m inference.py - | ffmpeg -i pipe: example.mkv, and it seems to run up to the point where it starts to give an ETA. Once there the time doesn't move and eventually, it says it was killed.

    Can you give me some tips on how to make this work better? I'm not familiar with most of the tools I've been given.

    opened by Ultramonte 2
  • [SUGGESTION] per-scene processing

    [SUGGESTION] per-scene processing

    Hi there, this project is awesome so thanks for your - voluntary - work !

    Since GANs-based processing is quite heavy computing task, it could be very useful to split it into multiple "segments" to allow parallel/scalable/collaborative/resumable instances.

    We suggest you to check @master-of-zen's Av1an framework, wich implements it.

    Hope that inspires.

    opened by forart 1
Releases(models)
Owner
I like Google Colab and Python.
Optimizing DR with hard negatives and achieving SOTA first-stage retrieval performance on TREC DL Track (SIGIR 2021 Full Paper).

Optimizing Dense Retrieval Model Training with Hard Negatives Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Jiafeng Guo, Min Zhang, Shaoping Ma This repo provi

Jingtao Zhan 99 Dec 27, 2022
A Transformer-Based Siamese Network for Change Detection

ChangeFormer: A Transformer-Based Siamese Network for Change Detection (Under review at IGARSS-2022) Wele Gedara Chaminda Bandara, Vishal M. Patel Her

Wele Gedara Chaminda Bandara 214 Dec 29, 2022
Final project for machine learning (CSC 590). Detection of hepatitis C and progression through blood samples.

Hepatitis C Blood Based Detection Final project for machine learning (CSC 590). Dataset from Kaggle. Using data from previous hepatitis C blood panels

Jennefer Maldonado 1 Dec 28, 2021
一些经典的CTR算法的复现; LR, FM, FFM, AFM, DeepFM,xDeepFM, PNN, DCN, DCNv2, DIFM, AutoInt, FiBiNet,AFN,ONN,DIN, DIEN ... (pytorch, tf2.0)

CTR Algorithm 根据论文, 博客, 知乎等方式学习一些CTR相关的算法 理解原理并自己动手来实现一遍 pytorch & tf2.0 保持一颗学徒的心! Schedule Model pytorch tensorflow2.0 paper LR ✔️ ✔️ \ FM ✔️ ✔️ Fac

luo han 149 Dec 20, 2022
CARMS: Categorical-Antithetic-REINFORCE Multi-Sample Gradient Estimator

CARMS: Categorical-Antithetic-REINFORCE Multi-Sample Gradient Estimator This is the official code repository for NeurIPS 2021 paper: CARMS: Categorica

Alek Dimitriev 1 Jul 09, 2022
WRENCH: Weak supeRvision bENCHmark

🔧 What is it? Wrench is a benchmark platform containing diverse weak supervision tasks. It also provides a common and easy framework for development

Jieyu Zhang 176 Dec 28, 2022
clustering moroccan stocks time series data using k-means with dtw (dynamic time warping)

Moroccan Stocks Clustering Context Hey! we don't always have to forecast time series am I right ? We use k-means to cluster about 70 moroccan stock pr

Ayman Lafaz 7 Oct 18, 2022
Code for Mining the Benefits of Two-stage and One-stage HOI Detection

Status: Archive (code is provided as-is, no updates expected) PPO-EWMA [Paper] This is code for training agents using PPO-EWMA and PPG-EWMA, introduce

OpenAI 33 Dec 15, 2022
Repository to run object detection on a model trained on an autonomous driving dataset.

Autonomous Driving Object Detection on the Raspberry Pi 4 Description of Repository This repository contains code and instructions to configure the ne

Ethan 51 Nov 17, 2022
PyTorch implementation of UNet++ (Nested U-Net).

PyTorch implementation of UNet++ (Nested U-Net) This repository contains code for a image segmentation model based on UNet++: A Nested U-Net Architect

4ui_iurz1 642 Jan 04, 2023
Google Landmark Recogntion and Retrieval 2021 Solutions

Google Landmark Recogntion and Retrieval 2021 Solutions In this repository you can find solution and code for Google Landmark Recognition 2021 and Goo

Vadim Timakin 5 Nov 25, 2022
A supplementary code for Editable Neural Networks, an ICLR 2020 submission.

Editable neural networks A supplementary code for Editable Neural Networks, an ICLR 2020 submission by Anton Sinitsin, Vsevolod Plokhotnyuk, Dmitry Py

Anton Sinitsin 32 Nov 29, 2022
Deep Image Matting implementation in PyTorch

Deep Image Matting Deep Image Matting paper implementation in PyTorch. Differences "fc6" is dropped. Indices pooling. "fc6" is clumpy, over 100 millio

Yang Liu 724 Dec 27, 2022
Official Pytorch implementation of the paper: "Locally Shifted Attention With Early Global Integration"

Locally-Shifted-Attention-With-Early-Global-Integration Pretrained models You can download all the models from here. Training Imagenet python -m torch

Shelly Sheynin 14 Apr 15, 2022
Repo for flood prediction using LSTMs and HAND

Abstract Every year, floods cause billions of dollars’ worth of damages to life, crops, and property. With a proper early flood warning system in plac

1 Oct 27, 2021
UMPNet: Universal Manipulation Policy Network for Articulated Objects

UMPNet: Universal Manipulation Policy Network for Articulated Objects Zhenjia Xu, Zhanpeng He, Shuran Song Columbia University Robotics and Automation

Columbia Artificial Intelligence and Robotics Lab 33 Dec 03, 2022
Generate images from texts. In Russian. In PaddlePaddle

ruDALL-E PaddlePaddle ruDALL-E in PaddlePaddle. Install: pip install rudalle_paddle==0.0.1rc1 Run with free v100 on AI Studio. Original Pytorch versi

AgentMaker 20 Oct 18, 2022
A Transformer-Based Feature Segmentation and Region Alignment Method For UAV-View Geo-Localization

University1652-Baseline [Paper] [Slide] [Explore Drone-view Data] [Explore Satellite-view Data] [Explore Street-view Data] [Video Sample] [中文介绍] This

Zhedong Zheng 335 Jan 06, 2023
Automates Machine Learning Pipeline with Feature Engineering and Hyper-Parameters Tuning :rocket:

MLJAR Automated Machine Learning Documentation: https://supervised.mljar.com/ Source Code: https://github.com/mljar/mljar-supervised Table of Contents

MLJAR 2.4k Dec 31, 2022
Learning to Communicate with Deep Multi-Agent Reinforcement Learning in PyTorch

Learning to Communicate with Deep Multi-Agent Reinforcement Learning This is a PyTorch implementation of the original Lua code release. Overview This

Minqi 297 Dec 12, 2022