SpanNER: Named EntityRe-/Recognition as Span Prediction

Related tags

Deep LearningSpanNER
Overview

SpanNER: Named EntityRe-/Recognition as Span Prediction

Overview | Demo | Installation | Preprocessing | Prepare Models | Running | System Combination | Bib

This repository contains the code for our paper SpanNER: Named EntityRe-/Recognition as Span Prediction (ACL 2021).

The model designed in this work has been deployed into ExplainaBoard.

Overview

We investigate complementary advantages of systems based on different paradigms: span prediction model and sequence labeling framework. We then reveal that span prediction, simultaneously, can serve as a system combiner to re-recognize named entities from different systems’ outputs. We experimentally implement 154 systems on 11 datasets, covering three languages, comprehensive results show the effectiveness of span prediction models that both serve as base NER systems and system combiners.

d

Demo

We deploy SpanNER into the ExplainaBoard.

Quick Installation

  • python3
  • PyTorch
  • pytorch-lightning

Run the following script to install the dependencies,

pip3 install -r requirements.txt

Data Preprocessing

The dataset needs to be preprocessed, before running the model. We provide dataprocess/bio2spannerformat.py for reference, which gives the CoNLL-2003 as an example. First, you need to download datasets, and then convert them into BIO2 tagging format. We provided the CoNLL-2003 dataset with BIO format in data/conll03_bio folder, and its preprocessed format dataset in data/conll03 folder.

The download links of the datasets used in this work are shown as follows:

Prepare Models

For English Datasets, we use BERT-Large.

For Dutch and Spanish Datasets, we use BERT-Multilingual-Base.

How to Run?

Here, we give CoNLL-2003 as an example. You may need to change the DATA_DIR, PRETRAINED, dataname, n_class to your own dataset path, pre-trained model path, dataset name, and the number of labels in the dataset, respectively.

./run_conll03_spanner.sh

System Combination

Base Model

We provided 12 base models (result-files) of CoNLL-2003 dataset in combination/results. More base model (result-files) can be download from ExplainaBoard-download.

Combination

Put your different base models (result-files) in the data/results folder, then run:

python comb_voting.py

Here, we provided four system combination methods, including:

  • SpanNER,
  • Majority voting (VM),
  • Weighted voting base on overall F1-score (VOF1),
  • Weighted voting base on class F1-score (VCF1).

Results at a Glance

d

Bib

@article{fu2021spanner,
  title={SpanNer: Named Entity Re-/Recognition as Span Prediction},
  author={Fu, Jinlan and Huang, Xuanjing and Liu, Pengfei},
  journal={arXiv preprint arXiv:2106.00641},
  year={2021}
}
Owner
NeuLab
Graham Neubig's Lab at LTI/CMU
NeuLab
“英特尔创新大师杯”深度学习挑战赛 赛道3:CCKS2021中文NLP地址相关性任务

基于 bert4keras 的一个baseline 不作任何 数据trick 单模 线上 最高可到 0.7891 # 基础 版 train.py 0.7769 # transformer 各层 cls concat 明神的trick https://xv44586.git

孙永松 7 Dec 28, 2021
Finite difference solution of 2D Poisson equation. Can handle Dirichlet, Neumann and mixed boundary conditions.

Poisson-solver-2D Finite difference solution of 2D Poisson equation Current version can handle Dirichlet, Neumann, and mixed (combination of Dirichlet

Mohammad Asif Zaman 34 Dec 23, 2022
A PyTorch Extension: Tools for easy mixed precision and distributed training in Pytorch

This repository holds NVIDIA-maintained utilities to streamline mixed precision and distributed training in Pytorch. Some of the code here will be included in upstream Pytorch eventually. The intenti

NVIDIA Corporation 6.9k Jan 03, 2023
Rank1 Conversation Emotion Detection Task

Rank1-Conversation_Emotion_Detection_Task accuracy macro-f1 recall 0.826 0.7544 0.719 基于预训练模型和时序预测模型的对话情感探测任务 1 摘要 针对对话情感探测任务,本文将其分为文本分类和时间序列预测两个子任务,分

Yuchen Han 2 Nov 28, 2021
RDA: Robust Domain Adaptation via Fourier Adversarial Attacking

RDA: Robust Domain Adaptation via Fourier Adversarial Attacking Updates 08/2021: check out our domain adaptation for video segmentation paper Domain A

17 Nov 30, 2022
Transformer Tracking (CVPR2021)

TransT - Transformer Tracking [CVPR2021] Official implementation of the TransT (CVPR2021) , including training code and trained models. We are revisin

chenxin 465 Jan 06, 2023
Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation

Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation Introduction This is a PyTorch

XMed-Lab 30 Sep 23, 2022
ParaGen is a PyTorch deep learning framework for parallel sequence generation

ParaGen is a PyTorch deep learning framework for parallel sequence generation. Apart from sequence generation, ParaGen also enhances various NLP tasks, including sequence-level classification, extrac

Bytedance Inc. 169 Dec 22, 2022
SAS output to EXCEL converter for Cornell/MIT Language and acquisition lab

CORNELLSASLAB SAS output to EXCEL converter for Cornell/MIT Language and acquisition lab Instructions: This python code can be used to convert SAS out

2 Jan 26, 2022
CMSC320 - Introduction to Data Science - Fall 2021

CMSC320 - Introduction to Data Science - Fall 2021 Instructors: Elias Jonatan Gonzalez and José Manuel Calderón Trilla Lectures: MW 3:30-4:45 & 5:00-6

Introduction to Data Science 6 Sep 12, 2022
Visualizing lattice vibration information from phonon dispersion to atoms (For GPUMD)

Phonon-Vibration-Viewer (For GPUMD) Visualizing lattice vibration information from phonon dispersion for primitive atoms. In this tutorial, we will in

Liangting 6 Dec 10, 2022
A project that uses optical flow and machine learning to detect aimhacking in video clips.

waldo-anticheat A project that aims to use optical flow and machine learning to visually detect cheating or hacking in video clips from fps games. Che

waldo.vision 542 Dec 03, 2022
Proposed n-stage Latent Dirichlet Allocation method - A Novel Approach for LDA

n-stage Latent Dirichlet Allocation (n-LDA) Proposed n-LDA & A Novel Approach for classical LDA Latent Dirichlet Allocation (LDA) is a generative prob

Anıl Güven 4 Mar 07, 2022
It's a implement of this paper:Relation extraction via Multi-Level attention CNNs

Relation Classification via Multi-Level Attention CNNs It's a implement of this paper:Relation Classification via Multi-Level Attention CNNs. Training

Aybss 2 Nov 04, 2022
Keeper for Ricochet Protocol, implemented with Apache Airflow

Ricochet Keeper This repository contains Apache Airflow DAGs for executing keeper operations for Ricochet Exchange. Usage You will need to run this us

Ricochet Exchange 5 May 24, 2022
This repository is an official implementation of the paper MOTR: End-to-End Multiple-Object Tracking with TRansformer.

MOTR: End-to-End Multiple-Object Tracking with TRansformer This repository is an official implementation of the paper MOTR: End-to-End Multiple-Object

348 Jan 07, 2023
PyTorch implementation of paper “Unbiased Scene Graph Generation from Biased Training”

A new codebase for popular Scene Graph Generation methods (2020). Visualization & Scene Graph Extraction on custom images/datasets are provided. It's also a PyTorch implementation of paper “Unbiased

Kaihua Tang 824 Jan 03, 2023
Implementations for the ICLR-2021 paper: SEED: Self-supervised Distillation For Visual Representation.

Implementations for the ICLR-2021 paper: SEED: Self-supervised Distillation For Visual Representation.

Jacob 27 Oct 23, 2022
PyTorch implementation of normalizing flow models

PyTorch implementation of normalizing flow models

Vincent Stimper 242 Jan 02, 2023
A Tensorflow based library for Time Series Modelling with Gaussian Processes

Markovflow Documentation | Tutorials | API reference | Slack What does Markovflow do? Markovflow is a Python library for time-series analysis via prob

Secondmind Labs 24 Dec 12, 2022