SpanNER: Named EntityRe-/Recognition as Span Prediction

Related tags

Deep LearningSpanNER
Overview

SpanNER: Named EntityRe-/Recognition as Span Prediction

Overview | Demo | Installation | Preprocessing | Prepare Models | Running | System Combination | Bib

This repository contains the code for our paper SpanNER: Named EntityRe-/Recognition as Span Prediction (ACL 2021).

The model designed in this work has been deployed into ExplainaBoard.

Overview

We investigate complementary advantages of systems based on different paradigms: span prediction model and sequence labeling framework. We then reveal that span prediction, simultaneously, can serve as a system combiner to re-recognize named entities from different systems’ outputs. We experimentally implement 154 systems on 11 datasets, covering three languages, comprehensive results show the effectiveness of span prediction models that both serve as base NER systems and system combiners.

d

Demo

We deploy SpanNER into the ExplainaBoard.

Quick Installation

  • python3
  • PyTorch
  • pytorch-lightning

Run the following script to install the dependencies,

pip3 install -r requirements.txt

Data Preprocessing

The dataset needs to be preprocessed, before running the model. We provide dataprocess/bio2spannerformat.py for reference, which gives the CoNLL-2003 as an example. First, you need to download datasets, and then convert them into BIO2 tagging format. We provided the CoNLL-2003 dataset with BIO format in data/conll03_bio folder, and its preprocessed format dataset in data/conll03 folder.

The download links of the datasets used in this work are shown as follows:

Prepare Models

For English Datasets, we use BERT-Large.

For Dutch and Spanish Datasets, we use BERT-Multilingual-Base.

How to Run?

Here, we give CoNLL-2003 as an example. You may need to change the DATA_DIR, PRETRAINED, dataname, n_class to your own dataset path, pre-trained model path, dataset name, and the number of labels in the dataset, respectively.

./run_conll03_spanner.sh

System Combination

Base Model

We provided 12 base models (result-files) of CoNLL-2003 dataset in combination/results. More base model (result-files) can be download from ExplainaBoard-download.

Combination

Put your different base models (result-files) in the data/results folder, then run:

python comb_voting.py

Here, we provided four system combination methods, including:

  • SpanNER,
  • Majority voting (VM),
  • Weighted voting base on overall F1-score (VOF1),
  • Weighted voting base on class F1-score (VCF1).

Results at a Glance

d

Bib

@article{fu2021spanner,
  title={SpanNer: Named Entity Re-/Recognition as Span Prediction},
  author={Fu, Jinlan and Huang, Xuanjing and Liu, Pengfei},
  journal={arXiv preprint arXiv:2106.00641},
  year={2021}
}
Owner
NeuLab
Graham Neubig's Lab at LTI/CMU
NeuLab
A Pytorch loader for MVTecAD dataset.

MVTecAD A Pytorch loader for MVTecAD dataset. It strictly follows the code style of common Pytorch datasets, such as torchvision.datasets.CIFAR10. The

Jiyuan 1 Dec 27, 2021
The coda and data for "Measuring Fine-Grained Domain Relevance of Terms: A Hierarchical Core-Fringe Approach" (ACL '21)

We propose a hierarchical core-fringe learning framework to measure fine-grained domain relevance of terms – the degree that a term is relevant to a broad (e.g., computer science) or narrow (e.g., de

Jie Huang 14 Oct 21, 2022
Learning hierarchical attention for weakly-supervised chest X-ray abnormality localization and diagnosis

Hierarchical Attention Mining (HAM) for weakly-supervised abnormality localization This is the official PyTorch implementation for the HAM method. Pap

Xi Ouyang 22 Jan 02, 2023
Language-Agnostic Website Embedding and Classification

Homepage2Vec Language-Agnostic Website Embedding and Classification based on Curlie labels https://arxiv.org/pdf/2201.03677.pdf Homepage2Vec is a pre-

25 Dec 27, 2022
DaReCzech is a dataset for text relevance ranking in Czech

Dataset DaReCzech is a dataset for text relevance ranking in Czech. The dataset consists of more than 1.6M annotated query-documents pairs,

Seznam.cz a.s. 8 Jul 26, 2022
ElasticFace: Elastic Margin Loss for Deep Face Recognition

This is the official repository of the paper: ElasticFace: Elastic Margin Loss for Deep Face Recognition Paper on arxiv: arxiv Model Log file Pretrain

Fadi Boutros 113 Dec 14, 2022
This project deals with the detection of skin lesions within the ISICs dataset using YOLOv3 Object Detection with Darknet.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Skin Lesion detection using YOLO This project deal

Lalith Veerabhadrappa Badiger 1 Nov 22, 2021
Official Pytorch implementation of "Unbiased Classification Through Bias-Contrastive and Bias-Balanced Learning (NeurIPS 2021)

Unbiased Classification Through Bias-Contrastive and Bias-Balanced Learning (NeurIPS 2021) Official Pytorch implementation of Unbiased Classification

Youngkyu 17 Jan 01, 2023
Object Detection and Multi-Object Tracking

Object Detection and Multi-Object Tracking

Bobby Chen 1.6k Jan 04, 2023
Implementation of Segnet, FCN, UNet , PSPNet and other models in Keras.

Image Segmentation Keras : Implementation of Segnet, FCN, UNet, PSPNet and other models in Keras. Implementation of various Deep Image Segmentation mo

Divam Gupta 2.6k Jan 05, 2023
Repository of our paper 'Refer-it-in-RGBD' in CVPR 2021

Refer-it-in-RGBD This is the repository of our paper 'Refer-it-in-RGBD: A Bottom-up Approach for 3D Visual Grounding in RGBD Images' in CVPR 2021 Pape

Haolin Liu 34 Nov 07, 2022
Tensorflow Implementation of SMU: SMOOTH ACTIVATION FUNCTION FOR DEEP NETWORKS USING SMOOTHING MAXIMUM TECHNIQUE

SMU A Tensorflow Implementation of SMU: SMOOTH ACTIVATION FUNCTION FOR DEEP NETWORKS USING SMOOTHING MAXIMUM TECHNIQUE arXiv https://arxiv.org/abs/211

Fuhang 5 Jan 18, 2022
Simple, efficient and flexible vision toolbox for mxnet framework.

MXbox: Simple, efficient and flexible vision toolbox for mxnet framework. MXbox is a toolbox aiming to provide a general and simple interface for visi

Ligeng Zhu 31 Oct 19, 2019
Dataset and codebase for NeurIPS 2021 paper: Exploring Forensic Dental Identification with Deep Learning

Repository under construction. Example dataset, checkpoints, and training/testing scripts will be avaible soon! 💡 Collated best practices from most p

4 Jun 26, 2022
A minimal solution to hand motion capture from a single color camera at over 100fps. Easy to use, plug to run.

Minimal Hand A minimal solution to hand motion capture from a single color camera at over 100fps. Easy to use, plug to run. This project provides the

Yuxiao Zhou 824 Jan 07, 2023
Rethinking the Importance of Implementation Tricks in Multi-Agent Reinforcement Learning

RIIT Our open-source code for RIIT: Rethinking the Importance of Implementation Tricks in Multi-AgentReinforcement Learning. We implement and standard

405 Jan 06, 2023
A graph neural network (GNN) model to predict protein-protein interactions (PPI) with no sample features

A graph neural network (GNN) model to predict protein-protein interactions (PPI) with no sample features

2 Jul 25, 2022
Simple node deletion tool for onnx.

snd4onnx Simple node deletion tool for onnx. I only test very miscellaneous and limited patterns as a hobby. There are probably a large number of bugs

Katsuya Hyodo 6 May 15, 2022
Semi-supervised Learning for Sentiment Analysis

Neural-Semi-supervised-Learning-for-Text-Classification-Under-Large-Scale-Pretraining Code, models and Datasets for《Neural Semi-supervised Learning fo

47 Jan 01, 2023
Development Kit for the SoccerNet Challenge

SoccerNetv2-DevKit Welcome to the SoccerNet-V2 Development Kit for the SoccerNet Benchmark and Challenge. This kit is meant as a help to get started w

Silvio Giancola 117 Dec 30, 2022