Source code and Dataset creation for the paper "Neural Symbolic Regression That Scales"

Overview

NeuralSymbolicRegressionThatScales

Pytorch implementation and pretrained models for the paper "Neural Symbolic Regression That Scales", presented at ICML 2021. Our deep-learning based approach is the first symbolic regression method that leverages large scale pre-training. We procedurally generate an unbounded set of equations, and simultaneously pre-train a Transformer to predict the symbolic equation from a corresponding set of input-output-pairs.

For details, see Neural Symbolic Regression That Scales. [arXiv]

Installation

Please clone and install this repository via

git clone https://github.com/SymposiumOrganization/NeuralSymbolicRegressionThatScales.git
cd NeuralSymbolicRegressionThatScales/
pip3 install -e src/

This library requires python>3.7

Pretrained models

We offer two models, "10M" and "100M". Both are trained with parameter configuration showed in dataset_configuration.json (which contains details about how datasets are created) and scripts/config.yaml (which contains details of how models are trained). "10M" model is trained with 10 million datasets and "100M" model is trained with 100 millions dataset.

  • Link to 100M: [Link]
  • Link to 10M: [Link]

If you want to try the models out, look at jupyter/fit_func.ipynb. Before running the notebook, make sure to first create a folder named "weights" and to download the provided checkpoints there.

Dataset Generation

Before training, you need a dataset of equations. Here the steps to follow

Raw training dataset generation

The equation generator scripts are based on [SymbolicMathematics] First, if you want to change the defaults value, configure the dataset_configuration.json file:

{
    "max_len": 20, #Maximum length of an equation
    "operators": "add:10,mul:10,sub:5,div:5,sqrt:4,pow2:4,pow3:2,pow4:1,pow5:1,ln:4,exp:4,sin:4,cos:4,tan:4,asin:2", #Operator unnormalized probability
    "max_ops": 5, #Maximum number of operations
    "rewrite_functions": "", #Not used, leave it empty
    "variables": ["x_1","x_2","x_3"], #Variable names, if you want to add more add follow the convention i.e. x_4, x_5,... and so on
    "eos_index": 1,
    "pad_index": 0
}

There are two ways to generate this dataset:

  • If you are running on linux, you use makefile in terminal as follows:
export NUM=${NumberOfEquations} #Export num of equations
make data/raw_datasets/${NUM}: #Launch make file command

NumberOfEquations can be defined in two formats with K or M suffix. For instance 100K is equal to 100'000 while 10M is equal to 10'0000000 For example, if you want to create a 10M dataset simply:

export NUM=10M #Export num variable
make data/raw_datasets/10M: #Launch make file command
  • Run this script:
python3 scripts/data_creation/dataset_creation.py --number_of_equations NumberOfEquations --no-debug #Replace NumberOfEquations with the number of equations you want to generate

After this command you will have a folder named data/raw_data/NumberOfEquations containing .h5 files. By default, each of this h5 files contains a maximum of 5e4 equations.

Raw test dataset generation

This step is optional. You can skip it if you want to use our test set used for the paper (located in test_set/nc.csv). Use the same commands as before for generating a validation dataset. All equations in this dataset will be remove from the training dataset in the next stage, hence this validation dataset should be small. For our paper it constisted of 200 equations.

#Code for generating a 150 equation dataset 
python3 scripts/data_creation/dataset_creation.py --number_of_equations 150 --no-debug #This code creates a new folder data/raw_datasets/150

If you want, you can convert the newly created validation dataset in a csv format. To do so, run: python3 scripts/csv_handling/dataload_format_to_csv.py raw_test_path=data/raw_datasets/150 This command will create two csv files named test_nc.csv (equations without constants) and test_wc.csv (equation with constants) in the test_set folder.

Remove test and numerical problematic equations from the training dataset

The following steps will remove the validation equations from the training set and remove equations that are always nan, inf, etc.

  • path_to_data_folder=data/raw_datasets/100000 if you have created a 100K dataset
  • path_to_csv=test_set/test_nc.csv if you have created 150 equations for validation. If you want to use the one in the paper replace it with nc.csv
python3 scripts/data_creation/filter_from_already_existing.py --data_path path_to_data_folder --csv_path path_to_csv #You can leave csv_path empty if you do not want to create a validation set
python3 scripts/data_creation/apply_filtering.py --data_path path_to_data_folder 

You should now have a folder named data/datasets/100000. This will be the training folder.

Training

Once you have created your training and validation datasets run

python3 scripts/train.py

You can configure the config.yaml with the necessary options. Most important, make sure you have set train_path and val_path correctly. If you have followed the 100K example this should be set as:

train_path:  data/datasets/100000
val_path: data/raw_datasets/150
A transformer which can randomly augment VOC format dataset (both image and bbox) online.

VocAug It is difficult to find a script which can augment VOC-format dataset, especially the bbox. Or find a script needs complex requirements so it i

Coder.AN 1 Mar 05, 2022
Pretrained language model and its related optimization techniques developed by Huawei Noah's Ark Lab.

Pretrained Language Model This repository provides the latest pretrained language models and its related optimization techniques developed by Huawei N

HUAWEI Noah's Ark Lab 2.6k Jan 01, 2023
Video-Captioning - A machine Learning project to generate captions for video frames indicating the relationship between the objects in the video

Video-Captioning - A machine Learning project to generate captions for video frames indicating the relationship between the objects in the video

1 Jan 23, 2022
Implementation for paper: Self-Regulation for Semantic Segmentation

Self-Regulation for Semantic Segmentation This is the PyTorch implementation for paper Self-Regulation for Semantic Segmentation, ICCV 2021. Citing SR

Dong ZHANG 30 Nov 21, 2022
Source code for CVPR2022 paper "Abandoning the Bayer-Filter to See in the Dark"

Abandoning the Bayer-Filter to See in the Dark (CVPR 2022) Paper: https://arxiv.org/abs/2203.04042 (Arxiv version) This code includes the training and

74 Dec 15, 2022
Dynamic Bottleneck for Robust Self-Supervised Exploration

Dynamic Bottleneck Introduction This is a TensorFlow based implementation for our paper on "Dynamic Bottleneck for Robust Self-Supervised Exploration"

Bai Chenjia 4 Nov 14, 2022
Code for the paper 'A High Performance CRF Model for Clothes Parsing'.

Clothes Parsing Overview This code provides an implementation of the research paper: A High Performance CRF Model for Clothes Parsing Edgar Simo-S

Edgar Simo-Serra 119 Nov 21, 2022
Implementation for our ICCV 2021 paper: Dual-Camera Super-Resolution with Aligned Attention Modules

DCSR: Dual Camera Super-Resolution Implementation for our ICCV 2021 oral paper: Dual-Camera Super-Resolution with Aligned Attention Modules paper | pr

Tengfei Wang 110 Dec 20, 2022
Group Activity Recognition with Clustered Spatial Temporal Transformer

GroupFormer Group Activity Recognition with Clustered Spatial-TemporalTransformer Backbone Style Action Acc Activity Acc Config Download Inv3+flow+pos

28 Dec 12, 2022
Intelligent Video Analytics toolkit based on different inference backends.

English | δΈ­ζ–‡ OpenIVA OpenIVA is an end-to-end intelligent video analytics development toolkit based on different inference backends, designed to help

Quantum Liu 15 Oct 27, 2022
A minimalist implementation of score-based diffusion model

sdeflow-light This is a minimalist codebase for training score-based diffusion models (supporting MNIST and CIFAR-10) used in the following paper "A V

Chin-Wei Huang 89 Dec 20, 2022
Pure python implementations of popular ML algorithms.

Minimal ML algorithms This repo includes minimal implementations of popular ML algorithms using pure python and numpy. The purpose of these notebooks

Alexis Gidiotis 3 Jan 10, 2022
All of the figures and notebooks for my deep learning book, for free!

"Deep Learning - A Visual Approach" by Andrew Glassner This is the official repo for my book from No Starch Press. Ordering the book My book is called

Andrew Glassner 227 Jan 04, 2023
Implementation of UNET architecture for Image Segmentation.

Semantic Segmentation using UNET This is the implementation of UNET on Carvana Image Masking Kaggle Challenge About the Dataset This dataset contains

Anushka agarwal 4 Dec 21, 2021
Kaggle | 9th place (part of) solution for the Bristol-Myers Squibb – Molecular Translation challenge

Part of the 9th place solution for the Bristol-Myers Squibb – Molecular Translation challenge translating images containing chemical structures into I

Erdene-Ochir Tuguldur 22 Nov 30, 2022
A collection of Reinforcement Learning algorithms from Sutton and Barto's book and other research papers implemented in Python.

Reinforcement-Learning-Notebooks A collection of Reinforcement Learning algorithms from Sutton and Barto's book and other research papers implemented

Pulkit Khandelwal 1k Dec 28, 2022
This is the official implementation of the paper "Object Propagation via Inter-Frame Attentions for Temporally Stable Video Instance Segmentation".

ObjProp Introduction This is the official implementation of the paper "Object Propagation via Inter-Frame Attentions for Temporally Stable Video Insta

Anirudh S Chakravarthy 6 May 03, 2022
Sketch-Based 3D Exploration with Stacked Generative Adversarial Networks

pix2vox [Demonstration video] Sketch-Based 3D Exploration with Stacked Generative Adversarial Networks. Generated samples Single-category generation M

Takumi Moriya 232 Nov 14, 2022
Implement of homography net by pytorch

HomographyNet Implement of homography net by pytorch Brief Introduction This project is based on the work Homography-Net: @article{detone2016deep, t

ronghao_CN 4 May 19, 2022
For AILAB: Cross Lingual Retrieval on Yelp Search Engine

Cross-lingual Information Retrieval Model for Document Search Train Phase CUDA_VISIBLE_DEVICES="0,1,2,3" \ python -m torch.distributed.launch --nproc_

Chilia Waterhouse 104 Nov 12, 2022