Source code and Dataset creation for the paper "Neural Symbolic Regression That Scales"

Overview

NeuralSymbolicRegressionThatScales

Pytorch implementation and pretrained models for the paper "Neural Symbolic Regression That Scales", presented at ICML 2021. Our deep-learning based approach is the first symbolic regression method that leverages large scale pre-training. We procedurally generate an unbounded set of equations, and simultaneously pre-train a Transformer to predict the symbolic equation from a corresponding set of input-output-pairs.

For details, see Neural Symbolic Regression That Scales. [arXiv]

Installation

Please clone and install this repository via

git clone https://github.com/SymposiumOrganization/NeuralSymbolicRegressionThatScales.git
cd NeuralSymbolicRegressionThatScales/
pip3 install -e src/

This library requires python>3.7

Pretrained models

We offer two models, "10M" and "100M". Both are trained with parameter configuration showed in dataset_configuration.json (which contains details about how datasets are created) and scripts/config.yaml (which contains details of how models are trained). "10M" model is trained with 10 million datasets and "100M" model is trained with 100 millions dataset.

  • Link to 100M: [Link]
  • Link to 10M: [Link]

If you want to try the models out, look at jupyter/fit_func.ipynb. Before running the notebook, make sure to first create a folder named "weights" and to download the provided checkpoints there.

Dataset Generation

Before training, you need a dataset of equations. Here the steps to follow

Raw training dataset generation

The equation generator scripts are based on [SymbolicMathematics] First, if you want to change the defaults value, configure the dataset_configuration.json file:

{
    "max_len": 20, #Maximum length of an equation
    "operators": "add:10,mul:10,sub:5,div:5,sqrt:4,pow2:4,pow3:2,pow4:1,pow5:1,ln:4,exp:4,sin:4,cos:4,tan:4,asin:2", #Operator unnormalized probability
    "max_ops": 5, #Maximum number of operations
    "rewrite_functions": "", #Not used, leave it empty
    "variables": ["x_1","x_2","x_3"], #Variable names, if you want to add more add follow the convention i.e. x_4, x_5,... and so on
    "eos_index": 1,
    "pad_index": 0
}

There are two ways to generate this dataset:

  • If you are running on linux, you use makefile in terminal as follows:
export NUM=${NumberOfEquations} #Export num of equations
make data/raw_datasets/${NUM}: #Launch make file command

NumberOfEquations can be defined in two formats with K or M suffix. For instance 100K is equal to 100'000 while 10M is equal to 10'0000000 For example, if you want to create a 10M dataset simply:

export NUM=10M #Export num variable
make data/raw_datasets/10M: #Launch make file command
  • Run this script:
python3 scripts/data_creation/dataset_creation.py --number_of_equations NumberOfEquations --no-debug #Replace NumberOfEquations with the number of equations you want to generate

After this command you will have a folder named data/raw_data/NumberOfEquations containing .h5 files. By default, each of this h5 files contains a maximum of 5e4 equations.

Raw test dataset generation

This step is optional. You can skip it if you want to use our test set used for the paper (located in test_set/nc.csv). Use the same commands as before for generating a validation dataset. All equations in this dataset will be remove from the training dataset in the next stage, hence this validation dataset should be small. For our paper it constisted of 200 equations.

#Code for generating a 150 equation dataset 
python3 scripts/data_creation/dataset_creation.py --number_of_equations 150 --no-debug #This code creates a new folder data/raw_datasets/150

If you want, you can convert the newly created validation dataset in a csv format. To do so, run: python3 scripts/csv_handling/dataload_format_to_csv.py raw_test_path=data/raw_datasets/150 This command will create two csv files named test_nc.csv (equations without constants) and test_wc.csv (equation with constants) in the test_set folder.

Remove test and numerical problematic equations from the training dataset

The following steps will remove the validation equations from the training set and remove equations that are always nan, inf, etc.

  • path_to_data_folder=data/raw_datasets/100000 if you have created a 100K dataset
  • path_to_csv=test_set/test_nc.csv if you have created 150 equations for validation. If you want to use the one in the paper replace it with nc.csv
python3 scripts/data_creation/filter_from_already_existing.py --data_path path_to_data_folder --csv_path path_to_csv #You can leave csv_path empty if you do not want to create a validation set
python3 scripts/data_creation/apply_filtering.py --data_path path_to_data_folder 

You should now have a folder named data/datasets/100000. This will be the training folder.

Training

Once you have created your training and validation datasets run

python3 scripts/train.py

You can configure the config.yaml with the necessary options. Most important, make sure you have set train_path and val_path correctly. If you have followed the 100K example this should be set as:

train_path:  data/datasets/100000
val_path: data/raw_datasets/150
A Dynamic Residual Self-Attention Network for Lightweight Single Image Super-Resolution

DRSAN A Dynamic Residual Self-Attention Network for Lightweight Single Image Super-Resolution Karam Park, Jae Woong Soh, and Nam Ik Cho Environments U

4 May 10, 2022
Official implementation of the paper Do pedestrians pay attention? Eye contact detection for autonomous driving

Do pedestrians pay attention? Eye contact detection for autonomous driving Official implementation of the paper Do pedestrians pay attention? Eye cont

VITA lab at EPFL 26 Nov 02, 2022
这是一个yolox-pytorch的源码,可以用于训练自己的模型。

YOLOX:You Only Look Once目标检测模型在Pytorch当中的实现 目录 性能情况 Performance 实现的内容 Achievement 所需环境 Environment 小技巧的设置 TricksSet 文件下载 Download 训练步骤 How2train 预测步骤

Bubbliiiing 613 Jan 05, 2023
Unet network with mean teacher for altrasound image segmentation

Unet network with mean teacher for altrasound image segmentation

5 Nov 21, 2022
Trans-Encoder: Unsupervised sentence-pair modelling through self- and mutual-distillations

Trans-Encoder: Unsupervised sentence-pair modelling through self- and mutual-distillations Code repo for paper Trans-Encoder: Unsupervised sentence-pa

Amazon 101 Dec 29, 2022
Code for the paper: Adversarial Machine Learning: Bayesian Perspectives

Code for the paper: Adversarial Machine Learning: Bayesian Perspectives This repository contains code for reproducing the experiments in the ** Advers

Roi Naveiro 2 Nov 11, 2022
Code for KHGT model, AAAI2021

KHGT Code for KHGT accepted by AAAI2021 Please unzip the data files in Datasets/ first. To run KHGT on Yelp data, use python labcode_yelp.py For Movi

32 Nov 29, 2022
Activity tragle - Google is tracking everything, we just look at it

activity_tragle Google is tracking everything, we just look at it here. You need

BERNARD Guillaume 1 Feb 15, 2022
A repository for storing njxzc final exam review material

文档地址,请戳我 👈 👈 👈 ☀️ 1.Reason 大三上期末复习软件工程的时候,发现其他高校在GitHub上开源了他们学校的期末试题,我很受触动。期末

GuJiakai 2 Jan 18, 2022
This repository contains the code and models for the following paper.

DC-ShadowNet Introduction This is an implementation of the following paper DC-ShadowNet: Single-Image Hard and Soft Shadow Removal Using Unsupervised

AuAgCu 65 Dec 27, 2022
Implementation of algorithms for continuous control (DDPG and NAF).

DEPRECATION This repository is deprecated and is no longer maintaned. Please see a more recent implementation of RL for continuous control at jax-sac.

Ilya Kostrikov 288 Dec 31, 2022
PSPNet in Chainer

PSPNet This is an unofficial implementation of Pyramid Scene Parsing Network (PSPNet) in Chainer. Training Requirement Python 3.4.4+ Chainer 3.0.0b1+

Shunta Saito 76 Dec 12, 2022
Machine Unlearning with SISA

Machine Unlearning with SISA Lucas Bourtoule, Varun Chandrasekaran, Christopher Choquette-Choo, Hengrui Jia, Adelin Travers, Baiwu Zhang, David Lie, N

CleverHans Lab 70 Jan 01, 2023
Permute Me Softly: Learning Soft Permutations for Graph Representations

Permute Me Softly: Learning Soft Permutations for Graph Representations

Giannis Nikolentzos 7 Jul 10, 2022
MoveNet Single Pose on OpenVINO

MoveNet Single Pose tracking on OpenVINO Running Google MoveNet Single Pose models on OpenVINO. A convolutional neural network model that runs on RGB

35 Nov 11, 2022
Implementation of Google Brain's WaveGrad high-fidelity vocoder

WaveGrad Implementation (PyTorch) of Google Brain's high-fidelity WaveGrad vocoder (paper). First implementation on GitHub with high-quality generatio

Ivan Vovk 363 Dec 27, 2022
Discretized Integrated Gradients for Explaining Language Models (EMNLP 2021)

Discretized Integrated Gradients for Explaining Language Models (EMNLP 2021) Overview of paths used in DIG and IG. w is the word being attributed. The

INK Lab @ USC 17 Oct 27, 2022
A facial recognition doorbell system using a Raspberry Pi

Facial Recognition Doorbell This project expands on the person-detecting doorbell system to allow it to identify faces, and announce names accordingly

rydercalmdown 22 Apr 15, 2022
Implementation of our paper "Video Playback Rate Perception for Self-supervised Spatio-Temporal Representation Learning".

PRP Introduction This is the implementation of our paper "Video Playback Rate Perception for Self-supervised Spatio-Temporal Representation Learning".

yuanyao366 39 Dec 29, 2022
GuideDog is an AI/ML-based mobile app designed to assist the lives of the visually impaired, 100% voice-controlled

Guidedog Authors: Kyuhee Jo, Steven Gunarso, Jacky Wang, Raghav Sharma GuideDog is an AI/ML-based mobile app designed to assist the lives of the visua

Kyuhee Jo 5 Nov 24, 2021