On Generating Extended Summaries of Long Documents

Overview

ExtendedSumm

This repository contains the implementation details and datasets used in On Generating Extended Summaries of Long Documents paper at the AAAI-21 Workshop on Scientific Document Understanding (SDU 2021).

Conda environment: preliminary setup

To install the required packages, please run conda yml file that you find in the root directory using the following command:

conda env create -f environment.yml

How to run...

IMPORTANT: The following commands should be run under src/ directory.

Dataset

To start with, you first need to download the datasets that are intended to work with the code base. You can download them from following links:

Dataset Download Link
arXiv-Long Download
PubMed-Long Download

After downloading the dataset, you will need to uncompress it using the following command:

tar -xvf pubmedL.tar.gz 

This will uncompress the pubmedL tar file into the current directory. The directory will include the single json files of different sets including training, validation, and test.

FORMAT Each paper file is structured within a a json object with the following keys:

  • "id" (String): the paper ID
  • "abstract" (String): the abstract text of the paper. This field is different from "gold" field for the datasets that have different ground-truth than the abstract.
  • "gold" (List >): the ground-truth summary of the paper, where the inner list is the tokens associated with each gold summary sentence.
  • "sentences" (List >): the source sentences of the full-text. The inner list contains 5 indices, each of which represents different fields of the source sentence:
    • Index [0]: tokens of the sentences (i.e., list of tokens).
    • Index [1]: textual representation of the section that the sentence belongs to.
    • Index [2]: Rouge-L score of the sentence with the gold summary.
    • Index [3]: textual representation of the sentences.
    • Index [4]: oracle label associated with the sentence (0, or 1).
    • Index [5]: the section id assigned by sequential sentence classification package. For more information, please refer to this repository

Preparing Data

Simply run the prep.sh bash script with providing the dataset directory. This script will use two functions to first create aggregated json files, and then preparing them for pretrained language models' usage.

Please note that if you want to use your custom dataset and create torch files, you will need to frame the format of your dataset to the given format in the Dataset section.

Training

The full training scripts are inside train.sh bash file. To run it on your machine, you will need to change the directories to fit in your needs:

...

DATA_PATH=/path/to/dataset/torch-files/
MODEL_PATH=/path/to/saved/model/

# Specifiying GPUs either single GPU, or multi-GPU
export CUDA_VISIBLE_DEVICES=0,1


# You don't need to modify these below 
LOG_DIR=../logs/$(echo $MODEL_PATH | cut -d \/ -f 6).log
mkdir -p ../results/$(echo $MODEL_PATH | cut -d \/ -f 6)
RESULT_PATH_TEST=../results/$(echo $MODEL_PATH | cut -d \/ -f 6)/

MAX_POS=2500

...

Inference

The inference scripts are inside test.sh bash file. To run it on your machine, you will need to modify the file directories:

...
# path to the data directory
BERT_DIR=/path/to/dataset/torch-files/

# path to the trained model directory
MODEL_PATH=/disk1/sajad/sci-trained-models/presum/LSUM-2500-segmented-sectioned-multi50-classi-v1/

# path to the best trained model (or the checkpoint that you want to run inference on)
CHECKPOINT=$MODEL_PATH/Recall_BEST_model_s63000_0.4910.pt

# GPU machines, either multi or single GPU
export CUDA_VISIBLE_DEVICES=0,1

MAX_POS=2500

...

Citation

If you plan to use this work, please cite the following papers:

@inproceedings{Sotudeh2021ExtendedSumm,
  title={On Generating Extended Summaries of Long Documents},
  author={Sajad Sotudeh and Arman Cohan and Nazli Goharian},
  booktitle={The AAAI-21 Workshop on Scientific Document Understanding (SDU 2021)},
  year={2021}
}
@inproceedings{Sotudeh2020LongSumm,
  title={GUIR @ LongSumm 2020: Learning to Generate Long Summaries from Scientific Documents},
  author={Sajad Sotudeh and Arman Cohan and Nazli Goharian},
  booktitle={First Workshop on Scholarly Document Processing (SDP 2020)},
  year={2020}
}
Owner
Georgetown Information Retrieval Lab
Georgetown Information Retrieval Lab
A Simple Framwork for CV Pre-training Model (SOCO, VirTex, BEiT)

A Simple Framwork for CV Pre-training Model (SOCO, VirTex, BEiT)

Sense-GVT 14 Jul 07, 2022
CLASP - Contrastive Language-Aminoacid Sequence Pretraining

CLASP - Contrastive Language-Aminoacid Sequence Pretraining Repository for creating models pretrained on language and aminoacid sequences similar to C

Michael Pieler 133 Dec 29, 2022
Music Generation using Neural Networks Streamlit App

Music_Gen_Streamlit "Music Generation using Neural Networks" Streamlit App TO DO: Make a run_app.sh Introduction [~5 min] (Sohaib) Team Member names/i

Muhammad Sohaib Arshid 6 Aug 09, 2022
pytorch implementation of ABC : Auxiliary Balanced Classifier for Class-imbalanced Semi-supervised Learning

ABC:Auxiliary Balanced Classifier for Class-imbalanced Semi-supervised Learning, NeurIPS 2021 pytorch implementation of ABC : Auxiliary Balanced Class

Hyuck Lee 25 Dec 22, 2022
Efficient 6-DoF Grasp Generation in Cluttered Scenes

Contact-GraspNet Contact-GraspNet: Efficient 6-DoF Grasp Generation in Cluttered Scenes Martin Sundermeyer, Arsalan Mousavian, Rudolph Triebel, Dieter

NVIDIA Research Projects 148 Dec 28, 2022
Official implementation of "StyleCariGAN: Caricature Generation via StyleGAN Feature Map Modulation" (SIGGRAPH 2021)

StyleCariGAN: Caricature Generation via StyleGAN Feature Map Modulation This repository contains the official PyTorch implementation of the following

Wonjong Jang 270 Dec 30, 2022
NFT-Price-Prediction-CNN - Using visual feature extraction, prices of NFTs are predicted via CNN (Alexnet and Resnet) architectures.

NFT-Price-Prediction-CNN - Using visual feature extraction, prices of NFTs are predicted via CNN (Alexnet and Resnet) architectures.

5 Nov 03, 2022
这是一个yolox-keras的源码,可以用于训练自己的模型。

YOLOX:You Only Look Once目标检测模型在Keras当中的实现 目录 性能情况 Performance 实现的内容 Achievement 所需环境 Environment 小技巧的设置 TricksSet 文件下载 Download 训练步骤 How2train 预测步骤 Ho

Bubbliiiing 64 Nov 10, 2022
pytorch implementation for Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network arXiv:1609.04802

PyTorch SRResNet Implementation of Paper: "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network"(https://arxiv.org/abs

Jiu XU 436 Jan 09, 2023
A PyTorch re-implementation of the paper 'Exploring Simple Siamese Representation Learning'. Reproduced the 67.8% Top1 Acc on ImageNet.

Exploring simple siamese representation learning This is a PyTorch re-implementation of the SimSiam paper on ImageNet dataset. The results match that

Taojiannan Yang 72 Nov 09, 2022
Unofficial TensorFlow implementation of the Keyword Spotting Transformer model

Keyword Spotting Transformer This is the unofficial TensorFlow implementation of the Keyword Spotting Transformer model. This model is used to train o

Intelligent Machines Limited 8 May 11, 2022
DAN: Unfolding the Alternating Optimization for Blind Super Resolution

DAN-Basd-on-Openmmlab DAN: Unfolding the Alternating Optimization for Blind Super Resolution We reproduce DAN via mmediting based on open-sourced code

AlexZou 72 Dec 13, 2022
Visual Adversarial Imitation Learning using Variational Models (VMAIL)

Visual Adversarial Imitation Learning using Variational Models (VMAIL) This is the official implementation of the NeurIPS 2021 paper. Project website

14 Nov 18, 2022
Transfer SemanticKITTI labeles into other dataset/sensor formats.

LiDAR-Transfer Transfer SemanticKITTI labeles into other dataset/sensor formats. Content Convert datasets (NUSCENES, FORD, NCLT) to KITTI format Minim

Photogrammetry & Robotics Bonn 64 Nov 21, 2022
Discovering Dynamic Salient Regions with Spatio-Temporal Graph Neural Networks

Discovering Dynamic Salient Regions with Spatio-Temporal Graph Neural Networks This is the official code for DyReg model inroduced in Discovering Dyna

Bitdefender Machine Learning 11 Nov 08, 2022
Awesome Monocular 3D detection

Awesome Monocular 3D detection Paper list of 3D detetction, keep updating! Contents Paper List 2022 2021 2020 2019 2018 2017 2016 KITTI Results Paper

Zhikang Zou 184 Jan 04, 2023
Large-Scale Pre-training for Person Re-identification with Noisy Labels (LUPerson-NL)

LUPerson-NL Large-Scale Pre-training for Person Re-identification with Noisy Labels (LUPerson-NL) The repository is for our CVPR2022 paper Large-Scale

43 Dec 26, 2022
Official PyTorch implementation of the paper Image-Based CLIP-Guided Essence Transfer.

TargetCLIP- official pytorch implementation of the paper Image-Based CLIP-Guided Essence Transfer This repository finds a global direction in StyleGAN

Hila Chefer 221 Dec 13, 2022
Semi-supervised Semantic Segmentation with Directional Context-aware Consistency (CVPR 2021)

Semi-supervised Semantic Segmentation with Directional Context-aware Consistency (CAC) Xin Lai*, Zhuotao Tian*, Li Jiang, Shu Liu, Hengshuang Zhao, Li

DV Lab 137 Dec 14, 2022
基于深度强化学习的原神自动钓鱼AI

原神自动钓鱼AI由YOLOX, DQN两部分模型组成。使用迁移学习,半监督学习进行训练。 模型也包含一些使用opencv等传统数字图像处理方法实现的不可学习部分。

4.2k Jan 01, 2023