To provide 100 JAX exercises over different sections structured as a course or tutorials to teach and learn for beginners, intermediates as well as experts

Related tags

Deep Learningjaxton
Overview

JaxTon

💯 JAX exercises

License GitHub Twitter

Mission 🚀

To provide 100 JAX exercises over different sections structured as a course or tutorials to teach and learn for beginners, intermediates as well as experts.

JAX

The JAX package in Python is a library for high performance and efficient machine learning research.

It is commonly used for various deep learning tasks and runs seamlessly on CPUs, GPUs as well as TPUs.

Exercises 📖

There are a total of 100 JAX exercises divided into 10 sets of Jupyter Notebooks with 10 exercises each. It is recommended to go through the exercises in order but you may start with any set depending on your expertise.

Structured as exercises & tutorials - Choose your style
Suitable for beginners, intermediates & experts - Choose your level
Available on Colab, Kaggle, Binder & GitHub - Choose your platform
Supports running on CPU, GPU & TPU - Choose your backend

Set 01 • JAX Introduction • Beginner • Exercises 1-10

Style Colab Kaggle Binder GitHub
Exercises 1st February, 2022 1st February, 2022 1st February, 2022 1st February, 2022
Solutions 1st February, 2022 1st February, 2022 1st February, 2022 1st February, 2022

Set 02 • Data Operations • Beginner • Exercises 11-20

Style Colab Kaggle Binder GitHub
Exercises 4th February, 2022 4th February, 2022 4th February, 2022 4th February, 2022
Solutions 4th February, 2022 4th February, 2022 4th February, 2022 4th February, 2022

Set 03 • Pseudorandom Numbers • Beginner • Exercises 21-30

Style Colab Kaggle Binder GitHub
Exercises 7th February, 2022 7th February, 2022 7th February, 2022 7th February, 2022
Solutions 7th February, 2022 7th February, 2022 7th February, 2022 7th February, 2022

Set 04 • Just-In-Time (JIT) Compilation • Beginner • Exercises 31-40

Style Colab Kaggle Binder GitHub
Exercises 10th February, 2022 10th February, 2022 10th February, 2022 10th February, 2022
Solutions 10th February, 2022 10th February, 2022 10th February, 2022 10th February, 2022

Set 05 • Control Flows • Beginner • Exercises 41-50

Style Colab Kaggle Binder GitHub
Exercises 13th February, 2022 13th February, 2022 13th February, 2022 13th February, 2022
Solutions 13th February, 2022 13th February, 2022 13th February, 2022 13th February, 2022

Set 06 • Automatic Differentiation • Intermediate • Exercises 51-60

Style Colab Kaggle Binder GitHub
Exercises 16th February, 2022 16th February, 2022 16th February, 2022 16th February, 2022
Solutions 16th February, 2022 16th February, 2022 16th February, 2022 16th February, 2022

Set 07 • Automatic Vectorization • Intermediate • Exercises 61-70

Style Colab Kaggle Binder GitHub
Exercises 19th February, 2022 19th February, 2022 19th February, 2022 19th February, 2022
Solutions 19th February, 2022 19th February, 2022 19th February, 2022 19th February, 2022

Set 08 • Pytrees • Intermediate • Exercises 71-80

Style Colab Kaggle Binder GitHub
Exercises 22nd February, 2022 22nd February, 2022 22nd February, 2022 22nd February, 2022
Solutions 22nd February, 2022 22nd February, 2022 22nd February, 2022 22nd February, 2022

Set 09 • Neural Networks • Expert • Exercises 81-90

Style Colab Kaggle Binder GitHub
Exercises 25th February, 2022 25th February, 2022 25th February, 2022 25th February, 2022
Solutions 25th February, 2022 25th February, 2022 25th February, 2022 25th February, 2022

Set 10 • Capstone Project • Expert • Exercises 91-100

Style Colab Kaggle Binder GitHub
Exercises 28th February, 2022 28th February, 2022 28th February, 2022 28th February, 2022
Solutions 28th February, 2022 28th February, 2022 28th February, 2022 28th February, 2022

The Jupyter Notebooks can also be run locally by cloning the repo and running on your local jupyter server.

git clone https://github.com/vopani/jaxton.git
python3 -m pip install notebook
jupyter notebook

P.S. The notebooks will be periodically updated to improve the exercises and support the latest version.

Contribution 🛠️

Please create an Issue for any improvements, suggestions or errors in the content.

You can also tag @vopani on Twitter for any other queries or feedback.

Credits 🙏

JAX

License 📋

This project is licensed under the Apache License 2.0.

Owner
Rohan Rao
9-time Indian Sudoku Champion | Senior Data Scientist @h2oai | Quadruple Kaggle Grandmaster
Rohan Rao
Specification language for generating Generalized Linear Models (with or without mixed effects) from conceptual models

tisane Tisane: Authoring Statistical Models via Formal Reasoning from Conceptual and Data Relationships TL;DR: Analysts can use Tisane to author gener

Eunice Jun 11 Nov 15, 2022
Text to image synthesis using thought vectors

Text To Image Synthesis Using Thought Vectors This is an experimental tensorflow implementation of synthesizing images from captions using Skip Though

Paarth Neekhara 2.1k Jan 05, 2023
Source Code and data for my paper titled Linguistic Knowledge in Data Augmentation for Natural Language Processing: An Example on Chinese Question Matching

Description The source code and data for my paper titled Linguistic Knowledge in Data Augmentation for Natural Language Processing: An Example on Chin

Zhengxiang Wang 3 Jun 28, 2022
Code repository for paper `Skeleton Merger: an Unsupervised Aligned Keypoint Detector`.

Skeleton Merger Skeleton Merger, an Unsupervised Aligned Keypoint Detector. The paper is available at https://arxiv.org/abs/2103.10814. A map of the r

北海若 48 Nov 14, 2022
Code release of paper "Deep Multi-View Stereo gone wild"

Deep MVS gone wild Pytorch implementation of "Deep MVS gone wild" (Paper | website) This repository provides the code to reproduce the experiments of

François Darmon 53 Dec 24, 2022
Portfolio Optimization and Quantitative Strategic Asset Allocation in Python

Riskfolio-Lib Quantitative Strategic Asset Allocation, Easy for Everyone. Description Riskfolio-Lib is a library for making quantitative strategic ass

Riskfolio 1.7k Jan 07, 2023
A new test set for ImageNet

ImageNetV2 The ImageNetV2 dataset contains new test data for the ImageNet benchmark. This repository provides associated code for assembling and worki

186 Dec 18, 2022
MODNet: Trimap-Free Portrait Matting in Real Time

MODNet is a model for real-time portrait matting with only RGB image input.

Zhanghan Ke 2.8k Dec 30, 2022
Template repository to build PyTorch projects from source on any version of PyTorch/CUDA/cuDNN.

The Ultimate PyTorch Source-Build Template Translations: 한국어 TL;DR PyTorch built from source can be x4 faster than a naïve PyTorch install. This repos

Joonhyung Lee/이준형 651 Dec 12, 2022
The official implementation of the research paper "DAG Amendment for Inverse Control of Parametric Shapes"

DAG Amendment for Inverse Control of Parametric Shapes This repository is the official Blender implementation of the paper "DAG Amendment for Inverse

Elie Michel 157 Dec 26, 2022
MetaAvatar: Learning Animatable Clothed Human Models from Few Depth Images

MetaAvatar: Learning Animatable Clothed Human Models from Few Depth Images This repository contains the implementation of our paper MetaAvatar: Learni

sfwang 96 Dec 13, 2022
🙄 Difficult algorithm, Simple code.

🎉TensorFlow2.0-Examples🎉! "Talk is cheap, show me the code." ----- Linus Torvalds Created by YunYang1994 This tutorial was designed for easily divin

1.7k Dec 25, 2022
Just-Now - This Is Just Now Login Friendlist Cloner Tools

JUST NOW LOGIN FRIENDLIST CLONER TOOLS Install $ apt update $ apt upgrade $ apt

MAHADI HASAN AFRIDI 21 Mar 09, 2022
Implementation of SSMF: Shifting Seasonal Matrix Factorization

SSMF Implementation of SSMF: Shifting Seasonal Matrix Factorization, Koki Kawabata, Siddharth Bhatia, Rui Liu, Mohit Wadhwa, Bryan Hooi. NeurIPS, 2021

Koki Kawabata 9 Jun 10, 2022
Honours project, on creating a depth estimation map from two stereo images of featureless regions

image-processing This module generates depth maps for shape-blocked-out images Install If working with anaconda, then from the root directory: conda e

2 Oct 17, 2022
NeRF visualization library under construction

NeRF visualization library using PlenOctrees, under construction pip install nerfvis Docs will be at: https://nerfvis.readthedocs.org import nerfvis s

Alex Yu 196 Jan 04, 2023
SOTA easy to use PyTorch-based DL training library

Easily train or fine-tune SOTA computer vision models from one training repository. SuperGradients Introduction Welcome to SuperGradients, a free open

619 Jan 03, 2023
Symbolic Music Generation with Diffusion Models

Symbolic Music Generation with Diffusion Models Supplementary code release for our work Symbolic Music Generation with Diffusion Models. Installation

Magenta 119 Jan 07, 2023
Sequence-tagging using deep learning

Classification using Deep Learning Requirements PyTorch version = 1.9.1+cu111 Python version = 3.8.10 PyTorch-Lightning version = 1.4.9 Huggingface

Vineet Kumar 2 Dec 20, 2022
Data-depth-inference - Data depth inference with python

Welcome! This readme will guide you through the use of the code in this reposito

Marco 3 Feb 08, 2022