This repository contains the code for "SBEVNet: End-to-End Deep Stereo Layout Estimation" paper by Divam Gupta, Wei Pu, Trenton Tabor, Jeff Schneider

Overview

SBEVNet: End-to-End Deep Stereo Layout Estimation

This repository contains the code for "SBEVNet: End-to-End Deep Stereo Layout Estimation" paper by Divam Gupta, Wei Pu, Trenton Tabor, Jeff Schneider

Usage

Dependencies

pip install --upgrade git+https://github.com/divamgupta/pytorch-propane
pip install torch==1.4.0 torchvision==0.5.0
pip install opencv-python
pip install torchgeometry

Dataset and Directories

For the example we use the following directories:

  • Datasets : ./datasets/carla/ and ./datasets/kitti/
  • Weights : ./sbevnet_weights/carla and ./sbevnet_weights/kitti
  • Predictions : ./predictions/kitti ./predictions/carla

Download and unzip the datasets and place them in ./datasets directory

Training

cd <cloned_repo_path>

Training the model on the CARLA dataset:

pytorch_propane sbevnet train    \
 --model_name sbevnet_model --network_name sbevnet --dataset_name  sbevnet_dataset_main --dataset_split train \
 --eval_dataset_name "sbevnet_dataset_main" --eval_dataset_split test \
 --batch_size 3  --eval_batch_size 1 \
 --n_epochs 20   --overwrite_epochs true  \
 --datapath "datasets/carla/dataset.json" \
 --save_path "sbevnet_weights/carla/carla_save_0" \
 --image_w 512 \
 --image_h 288 \
 --max_disp 64 \
 --n_hmap 100 \
 --xmin 1 \
 --xmax 39 \
 --ymin -19 \
 --ymax 19 \
 --cx 256 \
 --cy 144 \
 --f 179.2531 \
 --tx 0.2 \
 --camera_ext_x 0.9 \
 --camera_ext_y -0.1 \
 --fixed_cam_confs true \
 --do_ipm_rgb true \
 --do_ipm_feats true  \
 --do_mask true --check_degenerate true 

Training the model on the KITTI dataset:

pytorch_propane sbevnet train    \
 --model_name sbevnet_model --network_name sbevnet --dataset_name  sbevnet_dataset_main --dataset_split train \
 --eval_dataset_name "sbevnet_dataset_main" --eval_dataset_split test \
 --batch_size 3  --eval_batch_size 1 \
 --n_epochs 40   --overwrite_epochs true  \
 --datapath "datasets/kitti/dataset.json" \
 --save_path "sbevnet_weights/kitti/kitti_save_0" \
 --image_w 640 \
 --image_h 256 \
 --max_disp 64 \
 --n_hmap 128 \
 --xmin 5.72 \
 --xmax 43.73 \
 --ymin -19 \
 --ymax 19 \
 --camera_ext_x 0 \
 --camera_ext_y 0 \
 --fixed_cam_confs false \
 --do_ipm_rgb true \
 --do_ipm_feats true  \
 --do_mask true --check_degenerate true 

Evaluation

Evaluating the model on the CARLA dataset:

pytorch_propane sbevnet eval_iou    \
 --model_name sbevnet_model --network_name sbevnet \
 --eval_dataset_name "sbevnet_dataset_main" --eval_dataset_split test --dataset_type carla \
 --eval_batch_size 1 \
 --datapath "datasets/carla/dataset.json" \
 --load_checkpoint_path "sbevnet_weights/carla/carla_save_0" \
 --image_w 512 \
 --image_h 288 \
 --max_disp 64 \
 --n_hmap 100 \
 --xmin 1 \
 --xmax 39 \
 --ymin -19 \
 --ymax 19 \
 --cx 256 \
 --cy 144 \
 --f 179.2531 \
 --tx 0.2 \
 --camera_ext_x 0.9 \
 --camera_ext_y -0.1 \
 --fixed_cam_confs true \
 --do_ipm_rgb true \
 --do_ipm_feats true  \
 --do_mask true 

Evaluating the model on the KITTI dataset:

pytorch_propane sbevnet eval_iou    \
 --model_name sbevnet_model --network_name sbevnet  \
 --eval_dataset_name "sbevnet_dataset_main" --eval_dataset_split test --dataset_type kitti \
 --eval_batch_size 1 \
 --datapath "datasets/kitti/dataset.json" \
 --load_checkpoint_path "sbevnet_weights/kitti/kitti_save_0" \
 --image_w 640 \
 --image_h 256 \
 --max_disp 64 \
 --n_hmap 128 \
 --xmin 5.72 \
 --xmax 43.73 \
 --ymin -19 \
 --ymax 19 \
 --camera_ext_x 0 \
 --camera_ext_y 0 \
 --fixed_cam_confs false \
 --do_ipm_rgb true \
 --do_ipm_feats true  \
 --do_mask true 

Save Predictions

Save predictions of the model on the CARLA dataset:

pytorch_propane sbevnet save_preds    \
 --model_name sbevnet_model --network_name sbevnet \
 --eval_dataset_name "sbevnet_dataset_main" --eval_dataset_split test --output_dir "predictions/kitti" \
 --eval_batch_size 1 \
 --datapath "datasets/carla/dataset.json" \
 --load_checkpoint_path "sbevnet_weights/carla/carla_save_0" \
 --image_w 512 \
 --image_h 288 \
 --max_disp 64 \
 --n_hmap 100 \
 --xmin 1 \
 --xmax 39 \
 --ymin -19 \
 --ymax 19 \
 --cx 256 \
 --cy 144 \
 --f 179.2531 \
 --tx 0.2 \
 --camera_ext_x 0.9 \
 --camera_ext_y -0.1 \
 --fixed_cam_confs true \
 --do_ipm_rgb true \
 --do_ipm_feats true  \
 --do_mask true 

Save predictions of the model on the KITTI dataset:

pytorch_propane sbevnet save_preds    \
 --model_name sbevnet_model --network_name sbevnet  \
 --eval_dataset_name "sbevnet_dataset_main" --eval_dataset_split test --output_dir "predictions/kitti" \
 --eval_batch_size 1 \
 --datapath "datasets/kitti/dataset.json" \
 --load_checkpoint_path "sbevnet_weights/kitti/kitti_save_0" \
 --image_w 640 \
 --image_h 256 \
 --max_disp 64 \
 --n_hmap 128 \
 --xmin 5.72 \
 --xmax 43.73 \
 --ymin -19 \
 --ymax 19 \
 --camera_ext_x 0 \
 --camera_ext_y 0 \
 --fixed_cam_confs false \
 --do_ipm_rgb true \
 --do_ipm_feats true  \
 --do_mask true 
Owner
Divam Gupta
Graduate student at Carnegie Mellon University | Former Research Fellow at Microsoft Research
Divam Gupta
This repository holds the code for the paper "Deep Conditional Gaussian Mixture Model forConstrained Clustering".

Deep Conditional Gaussian Mixture Model for Constrained Clustering. This repository holds the code for the paper Deep Conditional Gaussian Mixture Mod

17 Oct 30, 2022
The Instructed Glacier Model (IGM)

The Instructed Glacier Model (IGM) Overview The Instructed Glacier Model (IGM) simulates the ice dynamics, surface mass balance, and its coupling thro

27 Dec 16, 2022
Making a music video with Wav2CLIP and VQGAN-CLIP

music2video Overview A repo for making a music video with Wav2CLIP and VQGAN-CLIP. The base code was derived from VQGAN-CLIP The CLIP embedding for au

Joel Jang | 장요엘 163 Dec 26, 2022
The Unsupervised Reinforcement Learning Benchmark (URLB)

The Unsupervised Reinforcement Learning Benchmark (URLB) URLB provides a set of leading algorithms for unsupervised reinforcement learning where agent

259 Dec 26, 2022
Deep Semisupervised Multiview Learning With Increasing Views (IEEE TCYB 2021, PyTorch Code)

Deep Semisupervised Multiview Learning With Increasing Views (ISVN, IEEE TCYB) Peng Hu, Xi Peng, Hongyuan Zhu, Liangli Zhen, Jie Lin, Huaibai Yan, Dez

3 Nov 19, 2022
Unsupervised Feature Ranking via Attribute Networks.

FRANe Unsupervised Feature Ranking via Attribute Networks (FRANe) converts a dataset into a network (graph) with nodes that correspond to the features

7 Sep 29, 2022
A standard framework for modelling Deep Learning Models for tabular data

PyTorch Tabular aims to make Deep Learning with Tabular data easy and accessible to real-world cases and research alike.

801 Jan 08, 2023
Wenzhou-Kean University AI-LAB

AI-LAB This is Wenzhou-Kean University AI-LAB. Our research interests are in Computer Vision and Natural Language Processing. Computer Vision Please g

WKU AI-LAB 10 May 05, 2022
RARA: Zero-shot Sim2Real Visual Navigation with Following Foreground Cues

RARA: Zero-shot Sim2Real Visual Navigation with Following Foreground Cues FGBG (foreground-background) pytorch package for defining and training model

Klaas Kelchtermans 1 Jun 02, 2022
MBPO (paper: When to trust your model: Model-based policy optimization) in offline RL settings

offline-MBPO This repository contains the code of a version of model-based RL algorithm MBPO, which is modified to perform in offline RL settings Pape

LxzGordon 1 Oct 24, 2021
Negative Sample is Negative in Its Own Way: Tailoring Negative Sentences forImage-Text Retrieval

NSGDC Some codes in this repo are copied/modified from opensource implementations made available by UNITER, PyTorch, HuggingFace, OpenNMT, and Nvidia.

Zhihao Fan 2 Nov 07, 2022
The official homepage of the COCO-Stuff dataset.

The COCO-Stuff dataset Holger Caesar, Jasper Uijlings, Vittorio Ferrari Welcome to official homepage of the COCO-Stuff [1] dataset. COCO-Stuff augment

Holger Caesar 715 Dec 31, 2022
Character Grounding and Re-Identification in Story of Videos and Text Descriptions

Character in Story Identification Network (CiSIN) This project hosts the code for our paper. Youngjae Yu, Jongseok Kim, Heeseung Yun, Jiwan Chung and

8 Dec 09, 2022
This repository collects project-relevant Isabelle/HOL formalizations.

Isabelle/HOL formalizations related to the AuReLeE project Formalization of Abstract Argumentation Frameworks See AbstractArgumentation folder for the

AuReLeE project 1 Sep 10, 2022
Jigsaw Rate Severity of Toxic Comments

Jigsaw Rate Severity of Toxic Comments

Guanshuo Xu 66 Nov 30, 2022
Boosted CVaR Classification (NeurIPS 2021)

Boosted CVaR Classification Runtian Zhai, Chen Dan, Arun Sai Suggala, Zico Kolter, Pradeep Ravikumar NeurIPS 2021 Table of Contents Quick Start Train

Runtian Zhai 4 Feb 15, 2022
KakaoBrain KoGPT (Korean Generative Pre-trained Transformer)

KoGPT KoGPT (Korean Generative Pre-trained Transformer) https://github.com/kakaobrain/kogpt https://huggingface.co/kakaobrain/kogpt Model Descriptions

Kakao Brain 799 Dec 28, 2022
Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch

Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch

Pytorch Lightning 1.4k Jan 01, 2023
Code for "LoFTR: Detector-Free Local Feature Matching with Transformers", CVPR 2021

LoFTR: Detector-Free Local Feature Matching with Transformers Project Page | Paper LoFTR: Detector-Free Local Feature Matching with Transformers Jiami

ZJU3DV 1.4k Jan 04, 2023
PyTorch implementation of the Quasi-Recurrent Neural Network - up to 16 times faster than NVIDIA's cuDNN LSTM

Quasi-Recurrent Neural Network (QRNN) for PyTorch Updated to support multi-GPU environments via DataParallel - see the the multigpu_dataparallel.py ex

Salesforce 1.3k Dec 28, 2022