Aquarius - Enabling Fast, Scalable, Data-Driven Virtual Network Functions

Related tags

Deep LearningAquarius
Overview

Aquarius

Aquarius - Enabling Fast, Scalable, Data-Driven Virtual Network Functions

NOTE: We are currently going through the open-source process required by our institution. The content will soon be available. The steps that need to be completed are listed below:

  • PREPARE
  • INCLUSIVELINT
  • UNITTEST
  • LINT
  • BUILD & PUBLISH
  • CORONA
  • BLACKDUCK
  • SONARQUBE
  • HELM
  • DEPLOY
  • DEPLOY-STATIC
  • E2E
  • APIDOCS
  • GOPUBLISH

Introduction

This repository implements a data-collection and data-exploitation mechanism Aquarius as a load balancer plugin in VPP. For the sake of reproducibility, software and data artifacts for performance evaluation are maintained in this repository.

Directory Roadmap

- config                    // configuration files in json format        
- sc-author-kit-log         // artifacts description of testbed hardware, required by sc21 committee
- src                       // source code
    + client/server         // scripts that run on client/server VMs
    + lb                    // scripts that run on lb VMs
        * dev               // dev version (for offline feature collection)
        * deploy            // deploy version (for online policy evaluation)
    + utils                 // utility scripts that help to run the testbed
    + vpp                   // vpp plugin
        * dev               // dev version (for offline feature collection)
        * deploy            // deploy version (for online policy evaluation)
    + test                  // unit test codes
- data                      
    + trace                 // network traces replayed on the testbed
    + results (omitted)     // This is where all the datasets are dumped (will be automatically created once we run experiments)
    + img                   // VM image files (omitted here because of file size, server configurations are documented in README)
    + vpp_deb               // stores deb files for installing VPP on VMs
        * dev               // dev version (for offline feature collection)
        * deploy            // deploy version (for online policy evaluation)

Get Started

Pre-Configuration

Run python3 setup.py, which does the following things:

  • update the root directory in config/global_config.json to the directory of the cloned aquarius repository (replace the /home/yzy/aquarius);
  • clone the VPP repository in src/vpp/base;
  • update the physical_server_ip in config/global_config.json to the IP addresses of the actual server IP addresses in use;
  • update the vlan_if as the last network interface on the local machine
  • update the physical_server_ip in config/cluster/unittest-1.json to the local hostname

VM images

To prepare a VM original image, refer to the README file in data. To run all the experiments without issues, create a ssh-key on the host servers and copy the public key to the VMs so that commands can be executed from the host using ssh -t -t.

Run example

A simple example is created using a small network topology (1 client, 1 edge router, 1 load balancer, and 4 application servers) on a single machine. Simply follow the jupyter notebook in notebook/unittest. Make sure the configurations are well adapted to your own host machine. Also make sure that the host machine has at least 20 CPUs. Otherwise, the configuration can be modified in config/cluster/unittest-1.json. To reduce the amount of CPUs required, change the number of vcpu of each node in the json file.

Reproducibility

To reproduce the results in Aquarius paper, three notebooks are presented in notebook/reproduce. The dataset that are generated from the experiments are stored in data/reproduce. To run these experiments, 4 physical machines with 12 physcial cores (48 CPUs) each are required. MACROs in the notebook should be well adapted. For instance, VLAN should be configured across the actual inerfacesin use. An example of network topology is depicted below.

Multi-server Topology

Notes

Running the scripts, e.g. src/utils/testbed_utils.py, requires root access.

Aquarius

Aquarius - Enabling Fast, Scalable, Data-Driven Virtual Network Functions

You might also like...
Official code for ICCV2021 paper
Official code for ICCV2021 paper "M3D-VTON: A Monocular-to-3D Virtual Try-on Network"

M3D-VTON: A Monocular-to-3D Virtual Try-On Network Official code for ICCV2021 paper "M3D-VTON: A Monocular-to-3D Virtual Try-on Network" Paper | Suppl

Official PyTorch implementation of
Official PyTorch implementation of "RMGN: A Regional Mask Guided Network for Parser-free Virtual Try-on" (IJCAI-ECAI 2022)

RMGN-VITON RMGN: A Regional Mask Guided Network for Parser-free Virtual Try-on In IJCAI-ECAI 2022(short oral). [Paper] [Supplementary Material] Abstra

Code of paper
Code of paper "CDFI: Compression-Driven Network Design for Frame Interpolation", CVPR 2021

CDFI (Compression-Driven-Frame-Interpolation) [Paper] (Coming soon...) | [arXiv] Tianyu Ding*, Luming Liang*, Zhihui Zhu, Ilya Zharkov IEEE Conference

InDuDoNet+: A Model-Driven Interpretable Dual Domain Network for Metal Artifact Reduction in CT Images

InDuDoNet+: A Model-Driven Interpretable Dual Domain Network for Metal Artifact Reduction in CT Images Hong Wang, Yuexiang Li, Haimiao Zhang, Deyu Men

AI-based, context-driven network device ranking
AI-based, context-driven network device ranking

Batea A batea is a large shallow pan of wood or iron traditionally used by gold prospectors for washing sand and gravel to recover gold nuggets. Batea

RCDNet: A Model-driven Deep Neural Network for Single Image Rain Removal (CVPR2020)

RCDNet: A Model-driven Deep Neural Network for Single Image Rain Removal (CVPR2020) Hong Wang, Qi Xie, Qian Zhao, and Deyu Meng [PDF] [Supplementary M

A PyTorch Implementation of
A PyTorch Implementation of "SINE: Scalable Incomplete Network Embedding" (ICDM 2018).

Scalable Incomplete Network Embedding ⠀⠀ A PyTorch implementation of Scalable Incomplete Network Embedding (ICDM 2018). Abstract Attributed network em

The AugNet Python module contains functions for the fast computation of image similarity.
The AugNet Python module contains functions for the fast computation of image similarity.

AugNet AugNet: End-to-End Unsupervised Visual Representation Learning with Image Augmentation arxiv link In our work, we propose AugNet, a new deep le

A data-driven approach to quantify the value of classifiers in a machine learning ensemble.
A data-driven approach to quantify the value of classifiers in a machine learning ensemble.

Documentation | External Resources | Research Paper Shapley is a Python library for evaluating binary classifiers in a machine learning ensemble. The

Releases(sc22-v1.0-alpha)
  • sc22-v1.0-alpha(Jun 11, 2022)

    ALPHA version of Aquarius release for SC22.

    This release aims at demonstrating the basic workflow of the artifacts of Aquarius. Besides the jupyter notebooks which documents the actual procedure of producing all the experimental results in the paper, a unittest is provided to guide you through the basic workflow of the artifact.

    Please refer to the latest main branch of the Github repo to reproduce the core results presented in the paper: https://github.com/ZhiyuanYaoJ/Aquarius

    Source code(tar.gz)
    Source code(zip)
Owner
Zhiyuan YAO
PhD student at L'Ecole Polytechnique.
Zhiyuan YAO
AI Summer's complete catalog of articles

Learn Deep Learning with AI Summer A collection of all articles (almost 100) written for the AI Summer blog organized by topic. Deep Learning Theory M

AI Summer 95 Dec 29, 2022
XViT - Space-time Mixing Attention for Video Transformer

XViT - Space-time Mixing Attention for Video Transformer This is the official implementation of the XViT paper: @inproceedings{bulat2021space, title

Adrian Bulat 33 Dec 23, 2022
A highly efficient, fast, powerful and light-weight anime downloader and streamer for your favorite anime.

AnimDL - Download & Stream Your Favorite Anime AnimDL is an incredibly powerful tool for downloading and streaming anime. Core features Abuses the dev

KR 759 Jan 08, 2023
Voice Gender Recognition

In this project it was used some different Machine Learning models to identify the gender of a voice (Female or Male) based on some specific speech and voice attributes.

Anne Livia 1 Jan 27, 2022
Classical OCR DCNN reproduction based on PaddlePaddle framework.

Paddle-SVHN Classical OCR DCNN reproduction based on PaddlePaddle framework. This project reproduces Multi-digit Number Recognition from Street View I

1 Nov 12, 2021
Project ArXiv Citation Network

Project ArXiv Citation Network Overview This project involved the analysis of the ArXiv citation network. Usage The complete code of this project is i

Dennis Núñez-Fernández 5 Oct 20, 2022
The code for 'Deep Residual Fourier Transformation for Single Image Deblurring'

Deep Residual Fourier Transformation for Single Image Deblurring Xintian Mao, Yiming Liu, Wei Shen, Qingli Li and Yan Wang code will be released soon

145 Dec 13, 2022
patchmatch和patchmatchstereo算法的python实现

patchmatch patchmatch以及patchmatchstereo算法的python版实现 patchmatch参考 github patchmatchstereo参考李迎松博士的c++版代码 由于patchmatchstereo没有做任何优化,并且是python的代码,主要是方便解析算

Sanders Bao 11 Dec 02, 2022
Pairwise learning neural link prediction for ogb link prediction

Pairwise Learning for Neural Link Prediction for OGB (PLNLP-OGB) This repository provides evaluation codes of PLNLP for OGB link property prediction t

Zhitao WANG 31 Oct 10, 2022
This git repo contains the implementation of my ML project on Heart Disease Prediction

Introduction This git repo contains the implementation of my ML project on Heart Disease Prediction. This is a real-world machine learning model/proje

Aryan Dutta 1 Feb 02, 2022
The easiest tool for extracting radiomics features and training ML models on them.

Simple pipeline for experimenting with radiomics features Installation git clone https://github.com/piotrekwoznicki/ClassyRadiomics.git cd classrad pi

Piotr Woźnicki 17 Aug 04, 2022
Efficient face emotion recognition in photos and videos

This repository contains code of face emotion recognition that was developed in the RSF (Russian Science Foundation) project no. 20-71-10010 (Efficien

Andrey Savchenko 239 Jan 04, 2023
An adaptive hierarchical energy management strategy for hybrid electric vehicles

An adaptive hierarchical energy management strategy This project contains the source code of an adaptive hierarchical EMS combining heuristic equivale

19 Dec 13, 2022
https://sites.google.com/cornell.edu/recsys2021tutorial

Counterfactual Learning and Evaluation for Recommender Systems (RecSys'21 Tutorial) Materials for "Counterfactual Learning and Evaluation for Recommen

yuta-saito 45 Nov 10, 2022
Finetune the base 64 px GLIDE-text2im model from OpenAI on your own image-text dataset

Finetune the base 64 px GLIDE-text2im model from OpenAI on your own image-text dataset

Clay Mullis 82 Oct 13, 2022
From Canonical Correlation Analysis to Self-supervised Graph Neural Networks

Code for CCA-SSG model proposed in the NeurIPS 2021 paper From Canonical Correlation Analysis to Self-supervised Graph Neural Networks.

Hengrui Zhang 44 Nov 27, 2022
RAANet: Range-Aware Attention Network for LiDAR-based 3D Object Detection with Auxiliary Density Level Estimation

RAANet: Range-Aware Attention Network for LiDAR-based 3D Object Detection with Auxiliary Density Level Estimation Anonymous submission Abstract 3D obj

30 Sep 16, 2022
Official codebase for Decision Transformer: Reinforcement Learning via Sequence Modeling.

Decision Transformer Lili Chen*, Kevin Lu*, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas†, and Igor M

Kevin Lu 1.4k Jan 07, 2023
Permute Me Softly: Learning Soft Permutations for Graph Representations

Permute Me Softly: Learning Soft Permutations for Graph Representations

Giannis Nikolentzos 7 Jul 10, 2022
A simple pygame dino game which can also be trained and played by a NEAT KI

Dino Game AI Game The game itself was developed with the Pygame module pip install pygame You can also play it yourself by making the dino jump with t

Kilian Kier 7 Dec 05, 2022