Aquarius - Enabling Fast, Scalable, Data-Driven Virtual Network Functions

Related tags

Deep LearningAquarius
Overview

Aquarius

Aquarius - Enabling Fast, Scalable, Data-Driven Virtual Network Functions

NOTE: We are currently going through the open-source process required by our institution. The content will soon be available. The steps that need to be completed are listed below:

  • PREPARE
  • INCLUSIVELINT
  • UNITTEST
  • LINT
  • BUILD & PUBLISH
  • CORONA
  • BLACKDUCK
  • SONARQUBE
  • HELM
  • DEPLOY
  • DEPLOY-STATIC
  • E2E
  • APIDOCS
  • GOPUBLISH

Introduction

This repository implements a data-collection and data-exploitation mechanism Aquarius as a load balancer plugin in VPP. For the sake of reproducibility, software and data artifacts for performance evaluation are maintained in this repository.

Directory Roadmap

- config                    // configuration files in json format        
- sc-author-kit-log         // artifacts description of testbed hardware, required by sc21 committee
- src                       // source code
    + client/server         // scripts that run on client/server VMs
    + lb                    // scripts that run on lb VMs
        * dev               // dev version (for offline feature collection)
        * deploy            // deploy version (for online policy evaluation)
    + utils                 // utility scripts that help to run the testbed
    + vpp                   // vpp plugin
        * dev               // dev version (for offline feature collection)
        * deploy            // deploy version (for online policy evaluation)
    + test                  // unit test codes
- data                      
    + trace                 // network traces replayed on the testbed
    + results (omitted)     // This is where all the datasets are dumped (will be automatically created once we run experiments)
    + img                   // VM image files (omitted here because of file size, server configurations are documented in README)
    + vpp_deb               // stores deb files for installing VPP on VMs
        * dev               // dev version (for offline feature collection)
        * deploy            // deploy version (for online policy evaluation)

Get Started

Pre-Configuration

Run python3 setup.py, which does the following things:

  • update the root directory in config/global_config.json to the directory of the cloned aquarius repository (replace the /home/yzy/aquarius);
  • clone the VPP repository in src/vpp/base;
  • update the physical_server_ip in config/global_config.json to the IP addresses of the actual server IP addresses in use;
  • update the vlan_if as the last network interface on the local machine
  • update the physical_server_ip in config/cluster/unittest-1.json to the local hostname

VM images

To prepare a VM original image, refer to the README file in data. To run all the experiments without issues, create a ssh-key on the host servers and copy the public key to the VMs so that commands can be executed from the host using ssh -t -t.

Run example

A simple example is created using a small network topology (1 client, 1 edge router, 1 load balancer, and 4 application servers) on a single machine. Simply follow the jupyter notebook in notebook/unittest. Make sure the configurations are well adapted to your own host machine. Also make sure that the host machine has at least 20 CPUs. Otherwise, the configuration can be modified in config/cluster/unittest-1.json. To reduce the amount of CPUs required, change the number of vcpu of each node in the json file.

Reproducibility

To reproduce the results in Aquarius paper, three notebooks are presented in notebook/reproduce. The dataset that are generated from the experiments are stored in data/reproduce. To run these experiments, 4 physical machines with 12 physcial cores (48 CPUs) each are required. MACROs in the notebook should be well adapted. For instance, VLAN should be configured across the actual inerfacesin use. An example of network topology is depicted below.

Multi-server Topology

Notes

Running the scripts, e.g. src/utils/testbed_utils.py, requires root access.

Aquarius

Aquarius - Enabling Fast, Scalable, Data-Driven Virtual Network Functions

You might also like...
Official code for ICCV2021 paper
Official code for ICCV2021 paper "M3D-VTON: A Monocular-to-3D Virtual Try-on Network"

M3D-VTON: A Monocular-to-3D Virtual Try-On Network Official code for ICCV2021 paper "M3D-VTON: A Monocular-to-3D Virtual Try-on Network" Paper | Suppl

Official PyTorch implementation of
Official PyTorch implementation of "RMGN: A Regional Mask Guided Network for Parser-free Virtual Try-on" (IJCAI-ECAI 2022)

RMGN-VITON RMGN: A Regional Mask Guided Network for Parser-free Virtual Try-on In IJCAI-ECAI 2022(short oral). [Paper] [Supplementary Material] Abstra

Code of paper
Code of paper "CDFI: Compression-Driven Network Design for Frame Interpolation", CVPR 2021

CDFI (Compression-Driven-Frame-Interpolation) [Paper] (Coming soon...) | [arXiv] Tianyu Ding*, Luming Liang*, Zhihui Zhu, Ilya Zharkov IEEE Conference

InDuDoNet+: A Model-Driven Interpretable Dual Domain Network for Metal Artifact Reduction in CT Images

InDuDoNet+: A Model-Driven Interpretable Dual Domain Network for Metal Artifact Reduction in CT Images Hong Wang, Yuexiang Li, Haimiao Zhang, Deyu Men

AI-based, context-driven network device ranking
AI-based, context-driven network device ranking

Batea A batea is a large shallow pan of wood or iron traditionally used by gold prospectors for washing sand and gravel to recover gold nuggets. Batea

RCDNet: A Model-driven Deep Neural Network for Single Image Rain Removal (CVPR2020)

RCDNet: A Model-driven Deep Neural Network for Single Image Rain Removal (CVPR2020) Hong Wang, Qi Xie, Qian Zhao, and Deyu Meng [PDF] [Supplementary M

A PyTorch Implementation of
A PyTorch Implementation of "SINE: Scalable Incomplete Network Embedding" (ICDM 2018).

Scalable Incomplete Network Embedding ⠀⠀ A PyTorch implementation of Scalable Incomplete Network Embedding (ICDM 2018). Abstract Attributed network em

The AugNet Python module contains functions for the fast computation of image similarity.
The AugNet Python module contains functions for the fast computation of image similarity.

AugNet AugNet: End-to-End Unsupervised Visual Representation Learning with Image Augmentation arxiv link In our work, we propose AugNet, a new deep le

A data-driven approach to quantify the value of classifiers in a machine learning ensemble.
A data-driven approach to quantify the value of classifiers in a machine learning ensemble.

Documentation | External Resources | Research Paper Shapley is a Python library for evaluating binary classifiers in a machine learning ensemble. The

Releases(sc22-v1.0-alpha)
  • sc22-v1.0-alpha(Jun 11, 2022)

    ALPHA version of Aquarius release for SC22.

    This release aims at demonstrating the basic workflow of the artifacts of Aquarius. Besides the jupyter notebooks which documents the actual procedure of producing all the experimental results in the paper, a unittest is provided to guide you through the basic workflow of the artifact.

    Please refer to the latest main branch of the Github repo to reproduce the core results presented in the paper: https://github.com/ZhiyuanYaoJ/Aquarius

    Source code(tar.gz)
    Source code(zip)
Owner
Zhiyuan YAO
PhD student at L'Ecole Polytechnique.
Zhiyuan YAO
A new framework, collaborative cascade prediction based on graph neural networks (CCasGNN) to jointly utilize the structural characteristics, sequence features, and user profiles.

CCasGNN A new framework, collaborative cascade prediction based on graph neural networks (CCasGNN) to jointly utilize the structural characteristics,

5 Apr 29, 2022
Framework to build and train RL algorithms

RayLink RayLink is a RL framework used to build and train RL algorithms. RayLink was used to build a RL framework, and tested in a large-scale multi-a

Bytedance Inc. 32 Oct 07, 2022
Code for the paper Open Sesame: Getting Inside BERT's Linguistic Knowledge.

Open Sesame This repository contains the code for the paper Open Sesame: Getting Inside BERT's Linguistic Knowledge. Credits We built the project on t

9 Jul 24, 2022
BisQue is a web-based platform designed to provide researchers with organizational and quantitative analysis tools for 5D image data. Users can extend BisQue by implementing containerized ML workflows.

Overview BisQue is a web-based platform specifically designed to provide researchers with organizational and quantitative analysis tools for up to 5D

Vision Research Lab @ UCSB 26 Nov 29, 2022
A supplementary code for Editable Neural Networks, an ICLR 2020 submission.

Editable neural networks A supplementary code for Editable Neural Networks, an ICLR 2020 submission by Anton Sinitsin, Vsevolod Plokhotnyuk, Dmitry Py

Anton Sinitsin 32 Nov 29, 2022
alfred-py: A deep learning utility library for **human**

Alfred Alfred is command line tool for deep-learning usage. if you want split an video into image frames or combine frames into a single video, then a

JinTian 800 Jan 03, 2023
Magic tool for managing internet connection in local network by @zalexdev

Megacut ✂️ A new powerful Python3 tool for managing internet on a local network Installation git clone https://github.com/stryker-project/megacut cd m

Stryker 12 Dec 15, 2022
MVFNet: Multi-View Fusion Network for Efficient Video Recognition (AAAI 2021)

MVFNet: Multi-View Fusion Network for Efficient Video Recognition (AAAI 2021) Overview We release the code of the MVFNet (Multi-View Fusion Network).

2 Jan 29, 2022
CS50x-AI - Artificial Intelligence with Python from Harvard University

CS50x-AI Artificial Intelligence with Python from Harvard University 📖 Table of

Hosein Damavandi 6 Aug 22, 2022
Activity image-based video retrieval

Cross-modal-retrieval Our approach is focus on Activity Image-to-Video Retrieval (AIVR) task. The compared methods are state-of-the-art single modalit

BCMI 75 Oct 21, 2021
Implementation of the paper "Generating Symbolic Reasoning Problems with Transformer GANs"

Generating Symbolic Reasoning Problems with Transformer GANs This is the implementation of the paper Generating Symbolic Reasoning Problems with Trans

Reactive Systems Group 1 Apr 18, 2022
[SIGGRAPH 2021 Asia] DeepVecFont: Synthesizing High-quality Vector Fonts via Dual-modality Learning

DeepVecFont This is the official Pytorch implementation of the paper: Yizhi Wang and Zhouhui Lian. DeepVecFont: Synthesizing High-quality Vector Fonts

Yizhi Wang 146 Dec 18, 2022
working repo for my xumx-sliCQ submissions to the ISMIR 2021 MDX

Music Demixing Challenge - xumx-sliCQ This repository is the GitHub mirror of my working submission repository for the AICrowd ISMIR 2021 Music Demixi

4 Aug 25, 2021
Direct design of biquad filter cascades with deep learning by sampling random polynomials.

IIRNet Direct design of biquad filter cascades with deep learning by sampling random polynomials. Usage git clone https://github.com/csteinmetz1/IIRNe

Christian J. Steinmetz 55 Nov 02, 2022
Re-implementation of the vector capsule with dynamic routing

VectorCapsule Re-implementation of the vector capsule with dynamic routing We implement the vector capsule and dynamic routing via graph neural networ

ZhenchaoTang 10 Feb 10, 2022
An expansion for RDKit to read all types of files in one line

RDMolReader An expansion for RDKit to read all types of files in one line How to use? Add this single .py file to your project and import MolFromFile(

Ali Khodabandehlou 1 Dec 18, 2021
Semantic similarity computation with different state-of-the-art metrics

Semantic similarity computation with different state-of-the-art metrics Description • Installation • Usage • License Description TaxoSS is a semantic

6 Jun 22, 2022
nnFormer: Interleaved Transformer for Volumetric Segmentation

nnFormer: Interleaved Transformer for Volumetric Segmentation Code for paper "nnFormer: Interleaved Transformer for Volumetric Segmentation ". Please

jsguo 610 Dec 28, 2022
NUANCED is a user-centric conversational recommendation dataset that contains 5.1k annotated dialogues and 26k high-quality user turns.

NUANCED: Natural Utterance Annotation for Nuanced Conversation with Estimated Distributions Overview NUANCED is a user-centric conversational recommen

Facebook Research 18 Dec 28, 2021
IhoneyBakFileScan Modify - 批量网站备份文件扫描器,增加文件规则,优化内存占用

ihoneyBakFileScan_Modify 批量网站备份文件泄露扫描工具 2022.2.8 添加、修改内容 增加备份文件fuzz规则 修改备份文件大小判断

VMsec 220 Jan 05, 2023